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Introduction 
 Since the 1970's derivatives and in particular options play a crucial role in the 

financial markets and in the world economy, given their extensive usage for hedging, 

portfolio allocation, risk management and diversification purposes (Chance, 2004). In 

2014 the total number of options traded worldwide exceeded 21,87 billion contracts, out 

of which almost 11 billion contracts were on equity or equity index (FIA, 2015). The 

options for S&P 500, one of the most significant indexes of the NASDAQ are traded on 

the Chicago Board Options Exchange (CBOE). The underlying S&P 500 index 

consisting the stocks of the 500 biggest national firm acts as an indicator of the whole 

US economy. 

 Forecasting the future price or the directional change of financial assets have 

always been in the frontline of economics and other applied sciences due to the 

potential economic gain from producing reliable estimates for future values of such 

assets. Since the 1970's and the formulation of Efficient Market Theory it is assumed 

that no extra profits are achievable, given that all information is incorporated in prices 

observed in the market. Consequently one cannot achieve abnormal gains by using the 

predictions of even the most sophisticated forecasting methods in trading. Although 

studies have shown several examples when temporarily inefficiencies in hands with 

abnormal gains occurred one cannot establish a successful trading strategy on the 

forecast of any methods on the long run (Timmermann & Granger, 2004). 

 Building a forecasting model on the options market differs from doing the same 

on the stock market. Not only the value of an option is highly dependent on the 

volatility of the underlying, but also the change in the level of the volatility affects a 

multitude of options with different strike prices and maturities. From a practical point of 

view, while forecasting stock prices means giving a firm estimate to "the" future price 

of the asset and is considered a one-dimensional problem, forecasting option prices is a 

multidimensional problem. Options with different exercise prices and maturities have 

different levels of volatility, thus their price cannot be modeled nor forecasted by one 

single tool. Therefore, by providing an accurate forecast on the volatility on a specific 

option one can theoretically gain abnormal returns with a trading strategy, as long as the 

prediction models the implied volatility of the option in question. The neural networks 

are suspected to give such reliable and accurate forecast due to their ability to capture 

nonlinear, noisy and nonstacionary effects in the structure of volatility. A great number 
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of researchers have forecasted the volatility of the S&P 500 using various data mining 

models in diverse economic environments (Donaldson et al, 1996; Malliaris et al, 1996; 

Hamid et al, 2004; Hajizedah et al, 2012). Accurate forecasts could not only be 

achieved by using complex and hybridized models, but also by applying an ANN with 

the simplest structure. Research conducted on the field has verified the observation that 

future volatility is indeed predictable. However as many have pointed out forecasting 

with low measurement error is not the appropriate test of economic reliability of a 

model (Black & Scholes, 1972; Noh& Engle& Kane, 1997; Sheu & Wei, 2011). One 

must feed the forecast into a trading strategy and examine whether abnormal profits are 

achieved, or in other words concentrate on the economic not the statistic significance. 

 In this article we are trying to forecast the volatility of S&P 500 and prove the 

economic significance of the results by following the procedure detailed below. First we 

are producing an accurate forecast of the implied volatility of S&P 500 options by using 

a neural network enhanced with additional input variables. Secondly we feed the 

forecasted value to a the Option Trading Module to decide whether pricing anomalies 

do occur in different segments of the option market using call and put options with 

different time to maturities. Thirdly should an anomaly arise we long or short a straddle 

composed of a call and put option with similar exercise price and time to maturity 

parameters and hold it during a day from dayt  to dayt+1. In the end of each period we 

summarize the profits gained by the strategy and examine whether abnormal profits 

were reached in the presence of adequate transaction cost. We are trying to find answers 

for the following three hypotheses described below: 

 

Hypothesis 1.) The Artificial Neural Network provides a more accurate forecast of 

volatility than the GARCH model. 

Hypothesis 2.) Abnormal profits can be gained by feeding the forecasted future 

volatility into a trading strategy even after taking transaction costs into account. 

Hypothesis 3.) Options with different time to maturity react differently to the forecast 

of volatility, thus the level of profitability achieved differs in every segment of the 

option market. Studies in multiple segments of the option market have not been 

conducted from this aspect yet, so this paper aims to be a pioneer in connecting 

economic profitability with forecasting accuracy on multiple segments of the option 

market.     
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 Furthermore synthesizing the second a third assumption we conclude that at any 

given underlying and period there is at least one segment of the option market, options 

with similar maturities where the Efficient Market Hypothesis does not hold.  

Having introduced the topic and the main hypothesis of the research the remaining 

sections of this article are organized as follows. Section 1 presents the Efficient Market 

hypothesis and its application to stock and index price forecasting and volatility 

forecasting. The section also details the three methods generally applied in the literature 

determining whether option markets are efficient, and further elaborates on the 

connection between option pricing and volatility forecasting. Section 2 elaborates on the 

topic on volatility forecasting and different volatility models following the definition of 

volatility and the description of stylized facts in financial time series. This section 

further presents the neural networks and justifies their use in volatility forecasting. 

Section 3 introduces option-pricing techniques with special attention to the assumptions 

and shortcomings of the Black-Scholes model. This section further details the use of 

neural networks in option pricing making a distinction between those acting as quasi 

option pricing models and those merely using the proceeds of neural networks as inputs. 

Section 4 accounts for different methods of volatility trading emphasizing the 

importance of testing forecasting accuracy with trading strategies. After analyzing the 

delta neutral and straddle-based option trading strategy, the section concludes with the 

presentation of past research on option trading relying on volatility forecasts of neural 

networks. 

 In the second part section 5 gives an overview on the multicomponent model 

applied for volatility forecasting in the article, while section 6 details the data set used 

and the data preprocessing performed. The estimation and fitting of EGARCH(1,1) is 

also described in this section. Section 7 presents the mechanism of the model, by first 

describing the Volatility Forecasting and Option Trading Module and by walking the 

reader through the process from fitting and forecasting with the neural network to 

calculating the profit from the trading strategy. Section 8 presents the results of the 

research and benchmarks the result of the model to those of the GARCH model based 

trading. Section 9 concludes the paper and evaluates the hypothesis, sets the limitations 

of the research and defines the direction of future research.   
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1. Efficient Market Hypothesis and forecasting 
 
 According to the Eugene Fama a market in which prices always "fully reflect" 

available information is called efficient (Fama, 1970). In his work the scholar defines 

the three levels of market efficiency: the weak, the semi-strong and strong form. The 

weak form means that prices already reflect all the information incorporated in historic 

prices. The semi strong form suggests that prices efficiently adjust to other publicly 

available information, such as the announcement of periodical earnings, stock splits, 

dividends and related M&A activity. Finally the strong form of efficiency holds that all 

information "builds in" to the prices even those in the monopolistic possession of 

investor groups and participants. Jones and Netter propose a straightforward base for 

the distinction between the three forms of market efficiency. The weak form precludes 

only technical analysis from being profitable; while semi-strong extends it to both 

technical and fundamental analysis and the strong form means that even those with 

privileged information cannot achieve abnormal return (Jones et al, 2008).  

 Although many have criticized the theory both on theoretical and empirical 

grounds vast number of studies have been conducted on field. According to Fama 

(1970) if markets are weekly efficient the dynamics of an asset follow a random walk 

with a drift. As the process consists of two non-stationary components, the deterministic 

and the stochastic trend, the shocks affect stock prices through the latter. However 

should stock prices follow a trend stationary (mean-reversion) process one can forecast 

future prices from past behavior of an asset and earn abnormal returns by building a 

successful trading strategy on the anomaly (Lee et al, 2009). Inconclusive results have 

been produced by testing the unit root behavior of stock indices and individual stocks 

with univariate unit root test with or without breaks (Choudry, 1997; Kawakastsu et al, 

1999; Chadhuri et al, 2003; Lee et al, 2003; Narayan, 2005; Qian et al., 2008). 

Furthermore panel unit root tests were applied to financial time series reaching a 

conclusion with similar results than those of the univariate tests (Chaudri et al., 2004; 

Narayan et al. 2005 & 2007; Lean et al, 2007). Although many studies have concluded 

that stock prices are characterized as a unit-root/ random walk these results are not 

robust and research with contradictory results left this issue as a still unanswered 

question in economics. 

 Forecasting volatility on the other hand has a vast literature where forecast was 

performed with a large variety of models such as parametric, non-parametric and 
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machine learning techniques. One can build volatility models based on historic standard 

deviations (Random walk models, moving averages, ARIMA, ARFIMA models) or 

stochastic volatility, using implied volatilities derived from option prices, using on wide 

range models of the ARCH-GARCH family and non parametric, machine learning 

based models (Poon & Granger, 2003). Each approach listed above delivers a different 

estimate of volatility, as the '"true" conditional volatility is unobservable. Based on the 

definition of conditional variance one cannot simply specify the true conditioning 

information denoted by Ε . Ω!!!  in the equation below: 

Ε  𝑟! − Ε 𝑟! Ω!!!
! Ω!!!  

, where 𝑟! is the asset return realized at time t, Ε . Ω!!! is the expectation conditioned 

upon the true information set Ω available at time t-1. Not only it is not known what is 

exactly the conditioning information, but also it is unclear whether the volatility 

estimated with information subset Ω is close to the true conditional volatility (Harvey & 

Whaley, 1992). 

 However one must take into consideration that even if market inefficiencies are 

found and arbitrated with a successful trading strategy it is highly unlikely that the 

anomaly will persist for a long period of time. Stable forecasting methods have a self-

destructing mechanism when discovered and applied by large amount of investors. Not 

only does the specification of the model has to be recalibrated from time to time due to 

the non-stationary of time series, but also one must take into account the change in the 

level of transaction cost, undermining even the most refined forecasting results by 

diminishing trading profits significantly (Timmermann & Granger, 2004). 

 Pricing options and determining whether option markets are efficient is an 

intriguing and more complex issue than testing efficiency on stock markets.  Several 

studies have been conducted on the field since the 1970's. Arising opportunities of 

arbitrage observed in the market are clear indications of inefficiency (Klemkosky and 

Resnick, 1979). There are three different approaches to detect such inefficiencies in the 

market and to observe the violation of the law of one price (Prykhodko, 2013). 

 

 The most straightforward way to detect inefficiency is to test the put-call parity, 

and other conversions between the price of the call and put option of the same 

underlying. This approach calculates the theoretical price of the put option by the parity 

and compares it's the observed market price. Should the put be overpriced (underpriced) 
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investors short (long) the derivative, take an opposite position in the underlying and in 

the call option as well. Since the 1970's many scholars have conducted research on the 

topic and most of the result showed that even though violations of certain parities such 

as the box spread occur it does not necessarily lead to inefficiency (Phillips et al., 1980; 

Billingsley & Chance, 1985; Chance, 1986; Chance, 1987; Ronn, 1989; Kamara & 

Miller, 1995; Ackert & Tian, 2001 ). One can also test the efficiency of the option 

market by comparing the observed option prices in the market to those calculated by an 

adequate option pricing model (Chaudhury, 1985). This approach relies on the fact that 

models capture the characteristic of the market differently and by choosing an adequate 

model one can estimate option prices more effectively (Galai, 1977; Hutchinson et al. 

1997;Panayides, 2005; Panayiotis et al., 2008). The last and the most significant 

approach from our perspective is to test whether abnormal profits can be gained by 

giving an estimate to the future level of volatility and by applying it in trading.  

Contradictory conclusions have been reached by preceding research. According to some 

articles even tough anomalies do occur, as soon as transaction costs are taken into 

account extra profit diminishes rapidly and the market remains efficient (Chiras & 

Manaster, 1978; Harvey & Whaley, 1992; Guo, 2000). Others have reached opposite 

conclusion and even after accounting for an adequate amount of transaction cost, 

abnormal level of profits remained on the market, thus making it inefficient (Chiras & 

Manaster, 1978; Engle et al., 1993; Bartels & Lu, 2000; Sheu & Wei, 2011; Quek  & 

Tung, 2011). 

 However finding published articles on such anomalies, which are persistent and 

can be exploited by the implementation of a trading strategy, is almost impossible for 

three reasons. Firstly stable forecasting methods are unlikely to exist for long periods of 

time, because as soon as they are discovered by a large number of investors they will 

cease to exist, thus making any market efficient at least on the long run. Secondly as 

Guo has pointed out even discovering of a model able to forecast with the highest 

precision does not necessarily mean that the market in question is inefficient (Guo, 

2000). In the presence of adequate transaction costs the extra profit seemingly realized 

from forecast might erode, thus undermining the validity of the model. Finally as 

published scientific papers attempting to forecast returns seem to produce inconclusive 

results we might suspect that the reverse file drawer bias is present. In other fields of 

economics the "file drawer effect" means that studies finding insignificant effects are 

difficult to publish, therefore they are more likely to end up under a huge the stash of 
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paper on the desk of the researcher, hence the name.  However in case of studies on 

market efficiency the effect is reversed, as a researcher finding a successful model is 

more likely to sell it to an investment bank than to publish it in an academic journal 

(Timmermann & Granger, 2004). 

2. Volatility modeling and forecasting 

2.1 The motivation of volatility forecasting 

	
 In finance volatility is defined as the standard deviation of return provided by 

the variable per unit of time when the return is expressed using continuous 

compounding (Hull, 2015). It can also be regarded as a measure of fluctuation in a 

financial security price around its expected value (Rajashree et al., 2015). Forecasting 

volatility and establishing volatility models that produce reasonable estimates for future 

volatility play a key role in achieving economic gain from various financial 

applications. According to Reider (2009) the three main purposes of forecasting 

volatility are risk management, asset allocation, and taking bets on future volatility. The 

main goal of risk management is to measure the potential losses arising from various 

sources, while giving an accurate estimate of the future volatilities and correlations 

between the factors. Asset allocation aims to define the optimal allocation of assets in a 

large portfolio applying the Markowitzian approach of minimizing risk for a given level 

of expected returns. In order to find the optimal allocation one not only needs to 

forecast the future volatility, but also estimate the variance-covariance matrix of all 

assets in the portfolio (Reider, 2009). The last and most interesting application of 

volatility forecast is to use it in a trading strategy of volatility dependent financial 

assets, such as options, futures and other derivatives.  

 In the literature volatility forecasting models are generally classified in four 

categories: Historical or realized volatility models, the options implied standard 

deviation model, the ARCH-GARCH family models, and the stochastic volatility model 

(Blair at al, 2001; Poon & Granger, 2003). In the following section we will summarize 

the stylized facts of financial time series, briefly presenting the abovementioned models 

and detail the applied forecasting methods. 

 



	 10	

2.2 Stylized facts of financial time series and volatility 

	
 Financial time series exhibit several empirical patters that play an important role 

in specifying, estimating and forecasting in a model. Out of the 12 stylized facts of the 

returns of financial time series, first summarized by Poon & Granger (2003) five relate 

to volatility: The fat tails, the volatility clustering, the leverage effect, the long memory 

and the co-movements in volatility. Fat tails refers to a specific aspect of the 

distribution of financial time series, exhibiting fatter tails than those of a normal 

distribution. This observation is also exhibited in excess kurtosis. While the 

standardized fourth moment for a normal distribution is 3 for many financial time series 

it is far above this value (Fama, 1963). For modeling excess kurtosis, distributions, 

which have fatter tails than the normal, such as the Pareto and Levy, have been 

proposed in the literature (Knight & Satchell, 2007). Another stylized fact is the 

clustering of periods of volatility, where large movements in volatility are followed by 

further large movements. Clustering of volatility, or in other words, persistence of 

shocks can be demonstrated by correlograms and Ljung-Box statistics. The leverage 

effect means that financial time series price movements are generally negatively 

correlated with volatility. Empirical evidence on leverage effects can be found in 

Nelson (1991), Gallant, Rossi and Tauchen (1992, 1993), Campbell and Kyle (1993) 

and Engle and Ng (1993). Another stylized fact called long memory, especially 

apparent in high-frequency data states that volatility is highly persistent and provides 

evidence of near unit root behavior in the conditional variance process. Capitalizing on 

this observation ARCH-GARCH family models have incorporated unit root behavior, 

while Stochastic Volatility models used the long memory process for modeling 

persistence. Lastly co-movements in volatility appear when financial time series are 

observed across different markets. Significant movements in one currency coinciding 

with that of another usually suggest the importance of multivariate models in modeling 

cross-correlations of different markets (Knight & Satchell, 2007). Although GARCH 

model family has shown promising sings of capturing certain aspects of stylized facts, 

most of the nonlinearity and stochastic effect of volatility were still left unaccounted 

for. Both stochastic volatility models and data mining techniques take these effects into 

account and the latters even provide a forecast for future values of the volatility without 

exploring and sticking to strict assumption, thus offering a more robust solution for the 

problem. 
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2.3 Historical volatility models 

	
 Historical volatility is the most straightforward way to quantify the deviation of 

a financial asset. The method, also called statistical volatility calculates the standard 

deviation of an asset over a fixed period of time, such as 30,60 or 90 days. Using the 

natural logarithm of closing prices between each interval of time historical volatility is 

calculated as follows. 

HV= !
!!!

𝑥! − 𝑥 !!
!!!   and  xi=ln( !!

!!!!
) 

,where X is the return at the end of the ith interval, Pi is the closing price of a stock at 

the end of the ith interval and n+1 is the number of observations or number of observed 

days for daily basis (Amornwattana et al., 2007). Historical volatility allows one to 

observe the movements of volatility by comparing volatility estimates for different time 

span. For example should the 30 days volatility be significantly greater than the one for 

90 days an increase in the level of volatility in general is expected. Given that the 

historic or realized volatility is the most simple volatility model it serves as an input 

parameter to many time series and option pricing models (OPM) such as the Black 

Scholes model. Despite of the fact that it is easy to calculate and can be applied in the 

most straightforward way, the model has several drawbacks. Sudden changes in 

volatility are usually neglected and higher level of volatility at time t gets stuck in the 

model for long period of time, or in other words the model is persistent. 

 

2.4 Implied volatility models 

	
 Implied volatility is the proxy for market expectations on the future volatility of 

an asset, or by definition it is the volatility of the market price of an option when it is 

substituted into the pricing model. Derived from parametric option pricing models, such 

as the Black Scholes formula this volatility measure accurately represent the volatility 

of a specific option with given time to maturity and exercise price. As opposed to 

realized volatility that reflects the volatility of an asset for the preceding period, implied 

volatility represent the expectations of investors concerning the near future it serves as a 

proxy to measure investor fear. Compared to the historical volatility, implied volatility 

has a specific pattern when observed for options with different strike price called 

volatility smile. The implied volatility can be modeled and forecasted by Implied 
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Volatility Stochastic Regression (Guo, 2001), by parametric models and data mining 

techniques such as neural networks. Several articles addresses the problem of finding 

the adequate option pricing model to capture the "true" implied volatility by comparing 

the results from different models (Engle, Kane, Noh, 1997; Roh, 2007; Bianconi et al., 

2015). Others are searching for the adequate model for forecasting purposes and draw 

comparisons between different models (Koopman et al., 2004; Ahoniemi, 2008; 

Figlewski, 2004). The last two section presented both the implied and the historical 

volatility measures as adequate tools for forecasting, if however the research is 

conducted on the option market the former must be favored.  Realized volatility with its 

looking back calculation method cannot grab the forward looking characteristics of the 

expected level of volatility built in to the option prices, thus proves to be an inefficient 

measure in option pricing. 

 

2.5 ARCH-GARCH model family 

	
Let Rt be the return of a financial asset with conditional forecast 𝐸(𝑅! 𝐼!!!)as in 

equation. 

𝑅! = 𝐸(𝑅! 𝐼!!!)+ 𝜖! 

, where It-1 is the conditional information set on which forecasts are based and the 

additive forecast error has zero mean and conditional variance. 

𝐸(𝜖!! 𝐼!!!)+ 𝜖!! 

The flaw of classical time series models is that 𝜖! appears to be drawn from time 

dependent heteroscedastic distribution. Therefore the main goal of conditional volatility 

models are to capture this effect and produce a forecasted variance 𝜎!! , along with a 

return forecast error 𝜖!! , so that the standardized residuals, (𝜖!!/𝜎!!) are homoscedastic 

and independent. The Autoregressive Conditional Heteroscedasticity (ARCH) model, 

originally proposed by Engle (1982) addresses this problem by creating a time series 

model where the variance is forecasted as a moving average of past error terms. The 

ARCH model consists of three equations and it models the unconditional variance with 

an AR (1) process. 

𝑦! = 𝑐 + 𝜙𝑦!!! + 𝑢! 

𝑢! = 𝜎!𝜖! 𝜖! ∼ 𝐼. 𝐼.𝐷. (0,1) 

𝜎!! = 𝑎! + 𝑎!𝑢!!!!  
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The introduction of the model inspired academics to search for more refined models to 

capture the structure of volatility inherent in financial time series. The GARCH model 

(Generalized ARCH), a generalized form of ARCH proposed by Bollerslev (1986) 

reflects nonlinear dependence of the conditional variance of the time series, estimating 

jointly a conditional mean and conditional variance equation (Rajashree et al., 2015). 

𝑦! = 𝑐 + 𝜙𝑦!!! + 𝑢! 

𝑢! = 𝜎!𝜖! 𝜖! ∼ 𝐼. 𝐼.𝐷. (0,1) 

𝜎!! = 𝑎! + 𝑎!𝑢!!!!
!!!

!
+ 𝑏!𝜎!!!!

!!!

!
 

Even though the model readily captures the persistence of volatility it lacks the ability 

to appropriately address the effects of negative and positive information. Consequently 

should we need to produce estimates on an asymmetric market the forecasting power of 

the model would diminish rapidly. 

 The EGARCH (Exponential GARCH) model, proposed by Nelson (1991) 

responds to this flaw of the GARCH by specifying conditional variance in logarithmic 

form. Using the specification estimation constraints to avoid negative variance is no 

longer needed and the model captures the stylized fact easier that a negative shock leads 

to higher conditional variance than a positive shock. (Poon & Granger, 2003) 

𝑦! = 𝑐 + 𝜙𝑦!!! + 𝑢! 

𝑢! = 𝜎!𝜖! 𝜖! ∼ 𝐼. 𝐼.𝐷. (0,1) 

ln𝜎!! = 𝑤 + 𝛽! ln𝜎!!!!
!

!!!
+ 𝛾!

!

!!!

𝑟! − 𝑖
𝜎! − 𝑖

− 2 𝜋 + 𝛼!
!

!!!

𝑟! − 𝑖
𝜎! − 𝑖

 

Based on extensive research on the use of EGARCH model in forecasting volatility the 

model readily captures the otherwise overlooked asymmetry and provides an adequate 

tool for modeling on noisy markets (Donaldson & Kamstra, 1997; Roh, 2007; Tseng et 

al., 2008; Hajizedah et al., 2012). The papers listed above detail the use of forecasted 

volatility from the EGARCH model as inputs to neural networks and other data mining 

techniques. By feeding the model-based volatility into a neural network alongside other 

inputs we are bound to get smaller error measures and more accurate forecast results. 

Naturally the volatility model itself can be applied to financial time series as it produces 

quite accurate forecast for future volatility (Andersen & Bollerslev, 1998).  
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2.6 Data mining techniques & Neural Networks for forecasting volatility 

2.6.1 Neural Network and data mining techniques 

	
 An Artificial Neural Network (ANN) is an information-processing 

nonparametric method generally used from the 1970's for function approximation and 

classification in various scientific and applied fields. As a branch of business 

intelligence (BI) data mining aims to discover hidden patterns in large set of data and 

further use them for various business purposes (Badics, 2014). Originally invented and 

used for engineering, mathematics and informatics data mining techniques were first 

introduced to the financial world in the 1980's and have been used for various financial 

application ever since. Given that financial time series are generally noisy, non-

stationary, and consist nonlinearity, stochastic parameters and structural breaks giving 

an accurate forecast for their future value was a puzzling problem at that time (Hall, 

1994; Li, et al., 2003; Huang et al., 2010; Lu et al., 2009). With the introduction of data 

mining techniques to finance, academics and practitioners quickly built on their main 

advantage, namely that they could easily forecast future results of various time series by 

learning the pattern of market variables while disregarding strict theoretical 

assumptions. 

 Artificial Neural Network (ANN) has several variants appearing in the literature 

on forecasting financial time series, but generally the Multi-Layer-Perceptron (MLP) 

model is used (Kaastra & Boyd, 1996). The MLP network normally has 3 or 4 layers, 

one or two hidden layer between the input and the output layer. The input layer has 

equivalent number of neurons as the number of input parameters to the model, while the 

number of neurons in the output layer corresponds to the target variable; one neuron is 

used for continuous, two for binary output modeling. The number of neurons in the 

hidden layer corresponds to the complexity of the model.  (Fig. 1.) Additionally all 

layer except the target layer contain an extra neuron called the bias neuron, which acting 

similarly as an intercept in an ordinary least square regression has the value of one 

(Badics, 2014). Normally, each neuron in a given layer is connected to all the other 

neuron in the following layer. As each connection represents a weight factor, the 

information reaches a single hidden layer neuron as the weighted sum of its inputs 

(Sermpinis et al., 2012). Within each neuron the information input is processed with an 

activation function. There is a number of activation functions in use and in application 
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according to the purpose of the network such as the step function, continuous log 

sigmoid, continuous tan sigmoid, softmax and hyperbolic tangent functions. For 

function approximation the hyperbolic tangent (tanh) function has been found to 

produce consistent results based on earlier research (Kriesel, 2007). 

 

  
Fig 1.  Artificial Neural Network with a hidden layer (Source: own editing) 

 

 The Artificial Neural Network has the ability to study complex relationships 

between variables and incorporate the nonlinearity and stochastic effects otherwise 

overlooked by traditional econometric models. Several studies have analyzed its ability 

to forecast stock or index prices (Chen et al., 2003; Chun & Kim, 2000; Thawornwong 

& Enke, 2004; Hansen & Nelson 2002) with positive results, just as it has been applied 

to forecasting the historic or implied volatility of financial time series (Donaldson et al, 

1996; Roh, 2007; Kristjanpoller et al, 2014; Tseng et al, 2009, Monfared et al, 2014).  

 

2.6.2 Forecasting volatility with Neural Networks  

 Neural networks, alongside with other data mining techniques have been proved 

successful in forecasting future value of volatility of financial time series'. Malliaris and 

Salchenberger wrote one of the earliest articles on neural networks predicting volatility. 

Using several exogenous and lagged variables they forecasted the implied volatility of 

S&P 100 index (OEX) using a sample of daily returns from 1992. The goodness-of-fit 

of the prediction, measured by MAD and MSE, as well as the high directional accuracy 

spurred others to develop and apply similar models. (Malliarias et al., 1996) Donaldson 

and Kamstra have proved that Artificial Neural networks can accurately capture the 

Input&Layer& Hidden&Layer& Target&Layer&
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conditional variance of the otherwise unforeseeable component of returns. They have 

examined the time series of S&P 500, TSEC, NIKKEI and FTSE during 1970 to 1990 

and found that ANN provides superior explanatory power compared to GARCH, 

EGARCH and GJR-GARCH models (Donaldson & Kamstra, 1997). Hamid and Iqbal 

forecasted the realized volatility of the S&P 500 index and then compared the results to 

the implied volatility derived from corresponding options by using Barone-Adhesi and 

Whaley option pricing method. The results show that forecasts from neural networks 

outperform those from implied volatility (Hamid & Iqbal, 2002).  

 Others applied an ANN hybridized with the outputs of other statistical an 

econometric model forecasts. Hybridization is a process, in which the beneficial 

features of several models are combined to form a new enhanced model in order to 

produce superior forecasting results. Roh (2007) used the forecast of the GARCH, 

EGARCH and EWMA models and fed them to ANNs beating the results of traditional 

methods in terms of error measures and goodness of fit. Hajizedah et al (2012) applied 

the forecasts of a GARCH and EGARCH models, but they also incorporated randomly 

generated time series using the parameters of the specified volatility models accounting 

for stochastic effects of volatility. The study performed on the S&P 500 index covered a 

decade from 1998 and showed an increased explanatory power, mainly due to the 

incorporation of generated time series model outputs to the model. Out of the vast 

amount of research on the subject outshines Kristjanpoller et al's (2013), who applied 

hybrid GARCH-ANN models to South American indices demonstrating an increased 

efficiency compared to traditional GARCH and ANN models. Finally Monafred and 

Enke (2014) have examined the performance of hybrid GARCH-ANN-s in different 

economic cycles and found that ANN outperforms traditional models in the periods of 

market turbulence, but might not prove as useful in calm periods.  

 There are several other data mining methods to forecast either stock index prices 

or volatility, such as the Support Vector Machine (SVM). SVM is a classification 

method designed to avoid the over fitting problem of neural network, which in turn is 

more likely to fall into local minima of the training error (Empirical Risk Minimization 

Principle). SVM minimizes structural risk, the upper bound of generalization error and 

thus handles high dimensional and noisy data better. There is an extensive literature on 

volatility forecasting with SVMs producing superior results compared to those of the 

classical econometric models'. (Andre et al., 2005; Gavrishchaka et al., 2006; Tang et 
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al, 2009; Wang& Ping, 2011) Given the limited extent of this article the application of 

SVM to volatility forecast will only be put in practice in future research. 

 

2.7 Measuring Goodness of fit of volatility models 

 In financial time series analysis the forecasting error is defined as the difference 

between the actual and the forecasted value of the time series. For evaluative purposes 

these errors are summarized and based on the mechanism of the error measure 

transformed. The six most common error measures in time series analysis are mean 

error, mean squared error, mean absolute error, mean percentage error and mean 

absolute error and root mean square absolute error. (Armstrong, 2001) Given that most 

of the studies have used MAE, MSE and RMSE as error measures, we are going to 

apply them as well (Ahoniemi, 2008; Panayotis et al., 2008; Roh, 2007). The equations 

of the listed error measures are as follows: 

 

 MAE: !
!

𝑦! − 𝑓!!
!!!  =  1

𝑇
𝑒𝑡

𝑇
𝑡!1  

 MSE:  1
𝑇

𝑦𝑡 − 𝑓𝑡
𝑇
𝑡!1

2  =  1
𝑇

𝑒𝑡
𝑇
𝑡!1

2 

 RMSE:  1
𝑇

𝑦𝑡 − 𝑓𝑡
𝑇
𝑡!1

2 = 1
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, where the t and T denotes the first and last observation of the time series of future 

values, 𝑦𝑡 stands for the realized and 𝑓𝑡 for the forecasted value of the time series at time 

t. Both MSE and RMSE provide an accurate tool for measuring forecasting error, but as 

the MATLAB applies the MSE as an error measures in the neural toolbox we further 

rely on this measure to compare the goodness-of-fit of different time series. However 

we must note that low MSE values and high accuracy is just a statistical test on the 

quality of the forecast, to check whether it is meaningful economically we must feed the 

results into a trading strategy. 

 

 



	 18	

3. Option pricing techniques 

3.1 Parametric models benefits and drawbacks 

 An option is a traded security giving the right to buy or sell an asset, for fixed 

price (exercise price) within a specified period of time (American type) or on a 

specified future date (European type) (Black & Scholes, 1973). Before 1970, even 

though a few scholars have published articles on valuation formulas for options 

(Sprenkle, 1961; Ayres, 1963; Boness, 1964; Samuelson, 1965; Baumol et al., 1966 and 

Chen, 1970) traders calculated their fair price based on individual valuations, empirical 

observations and experience. Since its introduction in 1970, the Black-Scholes model is 

considered as one of the biggest successes of financial theory both in terms of approach 

and applicability (Teneng, 2011). 

 The model is based on the following assumptions: volatility and risk free interest 

rate are constant, stock price follows a random walk and pays no dividends, the option 

is European, there are no transaction costs and market is perfect. The price of a call 

option is denoted as follows: 

 

𝐶!,!,!,!!"# = 𝑆𝑁 𝑑! − 𝑋𝑒!!"𝑁 𝑑!  

𝑑! =
ln 𝑆

𝑋 + 𝑅 + 𝜎
!

2 𝑇

𝜎 𝑇
 

𝑑! = 𝑑! − 𝜎 𝑇 

, where S is the current underlying price, X is the exercise price, T is the time to expiry, 

R is the interest rate and σ is the volatility of the underlying and 𝑁 𝑑!  is the 

cumulative probability distribution function for the standard normal distribution. The 

equation provides a useful, relatively straightforward and well-formulated answer to the 

pricing of an option, providing that one accounts for the underlying assumption of the 

model framework. 

 However as many scholars have pointed out the model is built on some 

unrealistic assumptions about the market undermining its validity and ability to price 

options accurately. First of all the volatility in the model is depicted as constant over 

time. Although this observation might be accurate in short term, it is never so on the 

long term, as volatility varies stochastically over time (Poon et al., 2000). In addition, 

the so-called leverage effect, namely that volatility is negatively correlated with asset 
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price return while trading volume produces co-movement with number of trades, 

undermines the theory of constant volatility (Nelson, 1991). All in all holding volatility 

constant affects option prices in such extent that it undermines the validity of the model. 

Secondly, the model readily assumes that returns of log normally distributed underlying 

stock prices follow the normal distribution. However it has been pointed out in the 

literature that asset returns have a finite variance and semi-heavy tails (Clark, 1973). 

Thirdly the model hypothesizes that stock movement follows a random walk, with stock 

price in time T being independent from its lagged value leaving out the impact of 

several economic factors from the analysis. In reality martingale representation theorem 

might not even hold as there may not be a single source of uncertainty defining the 

derivative and it’s underlying (Teneng, 2011). 

 Furthermore several other assumptions of the Black Scholes model do not hold 

when applied to real world financial time series such as the concept of constant interest 

rate, the lack of dividends during option's life, the lack of commission and transaction 

costs, the exclusive applicability to European style options and the perfect liquidity of 

market (Teneng, 2011). However we are only focusing on the inconsistency of first two 

assumptions because of two reasons. First the assumptions listed above might be 

handled by applying various modifications of the Black-Scholes equation and other 

parametric option pricing models to option pricing (Hull & White, 1987; Heston, 1993). 

Secondly this article addresses the problem of forecasting volatility with a novel model, 

which takes into consideration the nonlinearity and stochastic effects in the structure of 

option prices. Therefore addressing all the flaws of the Black-Scholes option-pricing 

framework is out of the scope of this research.  

 

3.2 Option pricing with neural networks  

 In the past 20 years several studies have looked at ability of Neural Networks 

and other machine learning methods to forecast an accurate price for options. There are 

two distinct ways of how neural networks are used for option pricing. The first method 

applies the ANN as a quasi-parametric option-pricing model, by using the inputs of BS 

model as input neurons and the market price of the option as the target neuron. The 

second method readily accepts most of the assumptions of the model, with an exception 

to those of constant volatility and constant risk-free-rate. The latter proposes an 

augmented forecasting model for the volatility of the underlying asset, detailed in 
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section 2.6.2 and then feeds it to the Black Scholes model (Ahmad & Wilmott, 2005).  

In the following section we are briefly going to present the literature on both methods 

analyzing the advantages and drawbacks of each approach.  

 

3.2.1 Neural networks as "option pricing" models  

Applying the ANN as a quasi Black-Scholes model means using the S/X (Moneyness 

ratio), r (risk free asset rate), T (time to maturity) and 𝜎! volatility as input neurons to 

predict the option price. The target neuron of the ANN is either the option market price 

(𝐶!!"#), or the option market price standardized by the exercise price (𝐶!
!"#

𝑋!), or the 

difference between the standardized predicted model price and market price of the 

option 𝐶!
!"#$%

𝑋! −
𝐶!!"#

𝑋! .  (Fig. 2.) This approach aims to loosen the rigidity and 

strict assumptions of Black Scholes model by applying the ANN directly and using it as 

estimator of the fair option price.  

 The first article applying such method fed the variables listed above to the 

network and trained it on S&P 100 option prices from the year of 1990 (Malliaris et al., 

1993). The research have shown lower MSE and better forecasting power similarly to 

Hutchinson et al's who tested the predicting ability of the ANN on the options of the 

S&P 500 index by using the standardized option market price (𝐶!
!"#

𝑋!) as target 

variable  (Hutchinson et al., 1994). Laybcygier and Connor have forecasted the 

volatility of the Australian SPI index and were the first to use the difference of the 

model price and the market price of the option as target variable (𝐶!!𝑑𝑙 − 𝐶!!"#),  

(Lajbcygier et al., 1997).  
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Fig 2.  Artificial Neural Network for option pricing with different target nodes (Source: 

own editing) 

 

 In the 2000's research on the topic was extended to various markets and assets 

employing more and more refined hybridized models in order to predict the option 

prices more accurately. Blynski and Faseruk have tested several variants of the simple 

ANN with different inputs and compared the results to those of the simple BS model. 

Both realized and implied volatilities were used as input nodes and although results 

showed the superiority of the implied volatility measure it remained inconclusive 

whether ANNs constantly over perform BS method in all economic cycle and 

environment (Blynski et al., 2007). A hybrid model consisting of two nested neural 

networks has also been tested for options of individual stocks. The first ANN was used 

solely for forecasting volatility, while the second model estimated the difference 

between the model price and actual price of the option (Amornwattana et al., 2007). 

Asian markets have also been in the scope of the research. Using various non 

parametric and parametric option pricing models Park et al. have tried to forecast option 

prices on the Korean Stock Exchange (KOSPI 200) in 20 different time period covering 

periods of market stress and calm. They concluded that non-parametrical models clearly 

outperformed Black-Scholes, Heston and Merton models based on the Diebold-Mariano 

test, which compared the forecasting errors of time series (Park et al., 2014). Saxena 

applied a hybrid BS-ANN model for the options of S&P CNX NIFTY, one of the most 

significant index traded on the Indian National Stock Exchange (NSE). The hybrid 

model produced better results even when multiple error measures were taken into 
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consideration (Saxena, 2008). Others have applied more refined methods to augment 

the performance of models. The Grey-EGARCH method has been hybridized with an 

ANN to produce a higher forecasting accuracy on the options of the Taiwan Stock 

Exchange (TAIEX). Taking into account not only the asymmetry of the volatility, but 

also the underlying trend in the error terms of the applied time series model the GREY-

EGARCH model increased the forecasting efficiency of the model (Tseng et al., 2008). 

 Despite of the vast literature and use of sophisticated models for forecasting 

option prices all the abovementioned models have a few flaws. Firstly due to the 

different time spans, assets and error measures used in the literature it is impossible to 

rank the models in different articles. Secondly estimating the option price even with the 

highest accuracy in itself does not lead to abnormal profits, as the articles lack a trading 

strategy that would capitalize on the augmented forecasting ability and by trading the 

anomaly realize economic gain. Therefore we suggest that detecting a mispricing in the 

option prices observed in the market is just a step in the process. The next logical step 

would be the specification and testing of an automated trading algorithm, which is 

applicable in diverse economic environment and produces robust results. 

 

3.2.2 Parametric OPMs using volatility as inputs derived from neural networks  

 Very few articles divide the process of option pricing into two separate stages, 

where neural networks or other machine learning methods would solely be used for 

estimating the volatility, which in turn would be fed into a parametric option-pricing 

model determining the fair price of the asset. Blynski and Faseruk suggest the use of a 

two-step hybrid neural network, where the first network is only used for forecasting the 

implied volatility, having S/X, T and r as inputs. The second network predicts the 

difference between the market price and the Black Scholes model price of the option 

(Blynski et al., 2007). In their neuro-fuzzy system framework Tung and Quek have 

forecasted the volatility with a neural network, but later on fed it to a fuzzy system 

leaving parametric models out of the picture completely. (Tung et al., 2011)  
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4. Trading volatility 
 The trading of volatility as an asset class is not a new phenomenon, as 

investments banks, option market makers and speculators have been trading volatility 

for many years. (Skeggs, 2006) Trading volatility means that the investor creates a 

portfolio, where the exposure to implied and realized volatility is maximized and the 

exposure to other factors, such as the movements in the price of the underlying is 

minimized. (Karanasos, 2005) The most popular method of volatility trading is 

directional volatility trading, where the investor trades the implied volatility versus the 

historical volatility on the same assets, called vega trading. It can be performed either 

across different strike prices or different maturities. One can trade directionally either 

using an option and an underlying or rely entirely on a portfolio consisting options. 

4.1. Testing the results of volatility forecast by option trading 

 Generally the explanatory power of the volatility forecast and its goodness-of-fit 

are tested with different statistical error measures, such as the MAPE, MAE or PE 

measures. However choosing the appropriate model for predicting volatility is related to 

the question of how to measure the prediction performance of a model. Given that the 

'true' value has no certain measure, comparing the performance of different models is 

considered to be straightforward when the forecast is applied in several option trading 

strategies (Sheu & Wei, 2011). As Fischer Black pointed out to test the model 

performance we give the “economic significance” the preference in contrast to the 

“statistical significance”. In other words ‘‘a model that consistently achieves to identify 

mispriced options and within a time period produces an amount of trading profits will 

always be preferred by a practitioner’’ (Black and Scholes, 1973). Noh, Engle and Kane 

tested the validity of the volatility forecasts on the S&P 500 Index with similar 

measures. In order to test the differences between different methods they tested the 

volatility forecasting performance using the potential profitability based on some option 

trading strategies as a metric, evaluated profits from options trading for rival volatility 

forecasting models and compared them in the same market (Noh& Engle& Kane, 

1997). Although the latter article had one flaw compared to the others; Instead of using 

observed market prices it simulated them, therefore the results of the research had little 

relevance to actually test the economic profitability in real market environment. 
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4.2. Option trading strategies: delta neutral vs. straddle based strategies 

 Delta Neutral trading strategy consists of selling and buying options and 

simultaneously taking opposite positions in the underlying.  The delta of a specific stock 

is defined as the rate of change of the option price with respect to the price of the 

underlying asset. To offset the impact of the price change to the value of a portfolio 

consisting options effectively an investor first must calculate the delta for the option. If 

for example options for shares worth 10,000$ have been bough and the market price of 

one share is 100$ one can protect from unwanted fluctuation by buying delta amount of 

underlying share. If the calculated delta in this example is 0,6 than the investor must 

buy 60 shares to counterbalance the unwanted change in the price of the underlying. 

The delta neutrality of the portfolio enables us to concentrate on the vega, which is the 

rate of change of the option price with respect to the volatility of the underlying asset. 

By creating delta neutral portfolios with high sensitivity to vega one can trade the 

volatility with a portfolio consisting options and underlying. However the delta hedged 

portfolio remains insensitive to price change for very little time, given that a small 

change in time either the delta or the price of the underlying affects the value of the 

position markedly. Therefore continuous rebalancing of the portfolio is required should 

one wish to maintain the delta hedged position (Hull, 2015).  

 One can offset the unwanted price change of the underlying and create vega 

sensitive combinations from options as well leaving the underlying out of the scope 

completely. A combination is an option trading strategy in which positions in both calls 

and puts on the same underlying are taken. The classic combination for gaining 

exposure to volatility is to buy an at-the money straddle (Carr & Madan, 2002). Straddle 

is an option strategy with which the investor holds both a call and a put with similar 

exercise price and maturity. This is a recommended strategy if the investor expects the 

price of the underlying to move significantly, but is unsure as to which direction it will 

move. Resulting in an almost delta neutral and highly vega sensitive position the trader 

benefits from the movement of the volatility (Tung et al., 2011). Should an investor 

expect the volatility to rise in the foreseeable future he can purchase a straddle by 

buying both a long call and put option for the same underlying, with the same maturity 

and exercise price (bottom straddle). On the other hand if he expects the volatility to 

decrease or he expects a relative calm in the fluctuation in the price of the underlying he 

can sell a straddle by writing both a call and put with similar maturity and exercise price 

for the same underlying. The latter, also called top straddle is a riskier strategy than the 
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bottom straddle given that the loss arising from unexpected large movement is 

unlimited (Hull, 2015). In general ATM call and put options with more than 15 days of 

maturity were used for straddle trading strategies in past research. Not only do they 

prove to be fairly priced and more liquid, but also trades at irrational prices due to 

illiquidity and fear do not usually take place in this segment of the option market 

(Bartels & Lu, 2000; Guo, 2000; Ahoniemi, 2008).  

4.3 Previous studies on option trading strategies with volatility estimation 

 There is a limited amount of scholarly work that applies the framework where 

the estimation of volatility is closely followed by examining whether options in the 

market are fairly priced and finally exploits pricing anomalies by establishing a 

successful trading strategy. Based on the following trading strategy we can divide the 

studies into two subcategories: Those trading with delta hedging strategy and those 

applying straddle based strategies. Hutchinson et al. have proposed the estimation of out 

of sample option prices with ordinary least squares regression and three neural 

networks. After comparing the resulting model option prices to those observed in the 

market they initiated a highly successful trading strategy using delta neutral hedging 

approach. The models were applied to S&P 500 futures options from 1987 to 1991 

(Hutchinson et al., 1994). Although this paper estimated the option price with a neural 

network used as a quasi-Black-Scholes formula it was the first to apply trading strategy 

with a neural network. Harvey and Whaley readily assumed that true conditional 

volatility is unobservable, thus comparing volatility predictions of various models is 

inefficient. Instead one should use the implied volatility as a proxy of the conditional 

one and use its forecasted value without benchmarking to other parametrical and non-

parametrical models. The research was performed on the option prices of the S&P 100 

that are all American type, thus deriving the implied volatility from the BS model 

would have led to biased results given that the BS is used for European type options 

only. Instead the article used the binomial model to price options and to derive their 

implied volatility. Furthermore the article has calculated the difference between the 

option price and the theoretical price and if it was negative (positive) they purchased 

(sold) an option and sold (bought) a delta unit of underlying. Although the results 

showed that volatility and option prices were foreseeable, no abnormal profits could 

have been gained due to the high level of transaction costs. All in all S&P 100 option 

market seemed to be efficient in terms that no abnormal profits could be realized taking 
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into account transaction costs (Harvey& Whaley, 1992). Guo has applied both the delta 

neutral hedging and the straddle based strategy in his article. Applying both the 

GARCH model estimation and the Implied Stochastic Volatility Regression method 

(ISVR) the article predicted the future volatility for the dollar/german mark options 

traded on the Philadelphia Stock exchange. Two agents using predictions from the 

volatility models traded and the resulting profits of the straddle-based strategy were 

compared to those of the delta neutral hedging strategy. Furthermore the agent using the 

estimations of the ISVR model reached significantly higher profits even in the presence 

of filters and transaction cost. (Guo, 2000) 

 Sheu and Wei have applied a new approach by incorporating investor sentiment 

to the estimation of future volatility.  After having tried several time spans of past 

volatility estimation, forecasting future volatility for 15 days from the data of the 

preceding 60 days seemed the best option. Based on the forecasted direction of 

volatility long or short straddle were constructed from ATM options for the main stock 

index of Taiwan, the TAIEX. Results have shown that models recruiting sentiment 

levels proved to be more profitable than those lacking sentiment indicators (Sheu & 

Wei, 2011). Ahoniemi examined the power of forecasting methods on the VIX index. 

For estimating volatility the ARIMA(1,1,1), the ARIMA(1,1,1)-GARCH(1,1), the 

ARIMAX(1,1,1) and the ARIMAX(1,1,1)-GARCH(1,1) models were used and based 

on their MSE values the model with the best explanatory power was selected (ARIMA-

GARCH). Without feeding the observed volatility to any option pricing models the 

article created either a long or short straddles from ATM calls and puts based on the 

forecasted direction of VIX index. In order to avoid unwanted excess transaction costs 

and to leave out the weakest signals filters of 0,1%, 0,2% and 0,5% were applied to the 

projected directional change of VIX. Options with the nearest maturity, always between 

15 and 45 days were selected and the results showed considerable excess profits 

(Ahoniemi, 2008). Finally it was Tung and Quek who applied more sophisticated 

volatility-forecasting methods in hands with straddle trading strategy. They divided the 

process into two parts, by creating the volatility projection (VPM) and trading decision 

modules (TDM) separating the problem into giving an accurate forecast and creating an 

optimal trading strategy. The use of evolving fuzzy semantic memory model, which is a 

type of neuro-fuzzy network with neural type estimation and fuzzy logic based if-than 

decision rules enabled the authors to incorporate technical analysis to the strategy. In 

the article both realized and implied volatility of Hang Seng Index (HSI) were 
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calculated, deriving the implied volatility from first in/out the money calls and puts and 

forecasting with a neural network using the lagged variables of the time series of both 

volatility measures. After benchmarking the forecasting error measures of the model to 

those of other data mining techniques the neuro-fuzzy network proved to have the best 

generalization abilities. They have applied the trading strategy and concluded that the 

resulting daily profits of the network have highly over performed those of other models 

(Tung et al, 2011). The inputs, targets, and results of the models are summarized in the 

table below Besides the data mentioned above, the table contains the type of volatility 

forecasted by the model, the time-span of the forecast, the results and the implication 

for market efficiency (Table 1.).  

 

 
Table 1.  Summary of studies on option trading strategies with volatility estimation  

(Source: own editing) 

Author Model	used Input Target Vol.	type Volatility	time	
span/forecast

Trading	strategy Results Market	
efficiency

Sheu,Wei	
(2011)

OLS-AR historic	vol.	σ60	

Future	
Volatility,	σ60	
realized(t+1)

realized,	
historic

σ60	
forecasted	
for	5,10,15,	
20	days

ATM	options	with	
monthly	maturity,	

straddle	held	till	cash	
settlement

On	average	15,84%	
monthly	return

Sentiment	
indicator	has	a	
+	impact	on	
trading	return

Quek,	TUng	
(2011)

Neural 
fuzzy 

network

AR(9) σ30	and	
implied	

volatility	(t-i)

σ30	and	implied	
volatility	(t+1)

historic	
and	

implied
30	days

Based	on	the	MACD	
rule	long/short	

straddle	form	ATM	
options	at	t,	

liquidation	at	t+1

Implied	volatility	
outperform	

historic	and	model	
based	vol.

Ineff.	mrkts,	as	
strategy	on	HSI	
options	result	
in	abnormal	

ret

Guo	(2000)

Hull-
White	
modell,	
GARCH,	
ISVR

GARCH,	ISVR	
method

σ30	and	implied	
volatility	(t+1)

historic	
and	

implied
30	days

Agents	trade	with	
both	delta	neutral	and	
straddle	strat	from	t	to	

t+1		Several	ATM	
option	pair	P/L	as	
averaged	(100$)

Significant	profit	
can	be	achieved	
with	filters	on	

volatility	change.

Market	is	
efficient	after	
1%	tr.	cost	is	
applied	to	
trades.

Engle,	Kane,	
Noh	(1993)

EGARCH,	
GARCH

S&P	100	
returns

volatility	at	t+1
model-
based

Options	for	
several	

maturities	
upt	to	9	
months	

Artificial	model	for	
options	with	1	day	to	
1	year	maturity	and	X	

at	1$

Significant	
abnormals	profits	
are	achievable

Market	is	
inefficient	as	
GARCH	agent	

erans	
abnormal	
profits

Harwey,	
Whaley	(1992)

OLS	
regression

S&P	500	
returns

volatility	at	t+1 implied

implied	for	
puts	and	
calls	

separately	
from	BS

Delta	neurtal	trading	
strategy

Forecast	is	
accurate,	but	taking	
into	account	tr.	
cost	abnormal	
returns	are	nor	
achievable.

Abnormal	
returns	are	not	

possible,	
market	is	
efficient

Bartles,	Lu	
(2000)

EGARCH,	
GARCH

GARCH,	
EGARCH	family	

models
volatility	at	t+1

implied,	
historic,	
model	
based

implied 
volatility	for	
30	days	
(t+1),	

historical	for	
15	days

Long/short	straddle	
from	options	with	
closest	maturity	
between	15	and	45	
days	starting	at	day	t	
and	ending	at	day	t+1

Positive	yield	is	
achiavable	from	
trading	strategy	
with	filters

Markets	are	
inefficient,	but	
tr.	cost	are	
marked	as	
0,1%

Ahoniemi	
(2008)

ARIMA,	
ARIMA-
GARCH,	
ARIMAX	
models

VIX	index volatility	at	t+1 implied

implied 
volatility	for	
22	days	
(t+1)

Long/short	straddle	
from	options	with	
closest	maturity	
between	15	and	45	
days	starting	at	day	t	
and	ending	at	day	t+1

Positive	yield	is	
achiavable	from	
trading	strategy

No	inplication	
for	market	
efficiency	as	
transaction	
cost	have	not	
been	acc.	for.

Delta	neutral	strategy	
held	as	long	as	

profitable/	no	daily	
readjustment

Corradu	Su	
parametric	model	
overperforms	BS	

model

Hybrid	model	
produces	
abnormal	
returns

Panayiotis	et	al	
(2008) ANN

S/X,	T,	r,	CBOE	
VIX,	hist.	vol,	
skewness,	
curtosis

Ann	to	estimate	
option	price	
difference		

implied 30	days
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5. A multicomponent model to forecast volatility and trade options  
 As detailed in the previous section of this article several papers have tried to 

apply enhanced volatility forecasting to option trading strategies producing inconclusive 

results. The difficulty of conducting research on the field lies in the fact that both the 

methodology and the trading strategy applied are not thoroughly documented in the 

papers, thus forcing one to make inferences while building an appropriate model. 

This thesis aims to create and test a complex, multicomponent model for the 

purposes of volatility forecasting and option trading in various economic environments 

(Fig. 3.). Following the date preprocessing and the estimation of implied volatility from 

observed option market prices the model first specify and fit an appropriate ARMA and 

GARCH family model to forecast the conditional volatility of the underlying’s returns. 

Secondly we calculate the realized volatility of the underlying return with a rolling 

method for several time spans (21, 42 and 64 working days) and also derive the implied 

volatility measures from the corresponding option prices. Furthermore we feed the 

abovementioned implied volatilities and conditional volatility alongside with the lagged 

variable of the realized volatility and other external explanatory variables to the neural 

network. We then train and validate the network using the variables listed above as 

input nodes and the implied volatility at day t as target node.  

 
 Fig 3.  The structure of the multicomponent model (Source: own editing) 

 

 Getting a highly reliable estimation for the future volatility is not the goal of this 

article but merely a tool, on which we need to further capitalize, by feeding it to the 

second module of the model. The Option Trading Module engages in trading based on 

two criteria. First it calculates the level of change in the predicted volatility and using a 
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filter decides whether the expected change in the level of volatility would generate 

enough profit to offset the incurring transaction costs, or in other words whether the 

model should engage in trading at all. Furthermore by substituting the forecasted 

implied volatility to the Black Scholes option pricing formula we get the hypothetical 

prices for both call and put options. The algorithm than compare the price of the 

straddle created from hypothetical calls and puts to the one created from observed 

market prices and engages in option trading with straddles accordingly. The model 

trades on daily bases throughout the business week and proceeds from previous 

transactions are continuously invested during the period. For benchmarking purposes 

the forecast of GARCH model were used by an additional agent, whose trade decisions 

are based only on the direction of forecasted conditional volatility. 

 Finally the portfolio values for both agents are calculated for the whole period 

hypothesizing a 100 $ worth initial investment. Alongside returns Sharpe ratios are also 

presented for both agents to facilitate benchmarking purposes. The efficiency of the 

volatility forecast of the neural network is measured by both the hit rate and the MSE of 

the forecast in each period. In addition to test the change of predictability with respect 

to increase in maturity forecasting errors for different tenors are compared with the 

Diebold-Mariano test. As the research is conducted on different time periods and 

maturities it offers an insight to a large extent of the option market's efficiency, which in 

turn can be tested by comparing the profitability of trading in different time periods. 

Lastly the sensitivity of the portfolio values to transaction costs and to the level of filter 

is also presented so that further inferences could be draw on the effect of external 

parameters to the profitability of the trading strategy.  

 

6. Data preprocessing and input variables 

6.1 Data and Time span 

 The research was conducted on a multidimensional dataset consisting both the 

time series of the S&P 500 index and data on its options from 2007.01.01- to 

2015.09.15. The dataset included not only the closing price for the index, but the 

corresponding volume as well. The option data itself contained more than 1000 data 

points for a day, including the last, ask and bid prices, implied volatilities, volume for 

both call and put options for a wide range of exercise price. 
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 The data was downloaded from the Bloomberg1. The data consisted of the daily 

closing prices and the volume of contracts in dollars for the underlying index, the 

closing prices of NASDAQ and VIX index and daily volumes for both call and put 

options for the S&P 500. Bloomberg provides data on historic option prices in the form 

of option chains, which is an artificially created time series reflecting the price change 

of an option in time with fixed exercise price and maturity. For analytical purposes the 

data had to be rearranged, so that at any given day the actual option mid, bid and ask 

closing price for a wide range of exercise prices and 3 maturities are shown. (Fig. 4.) 

Therefore by creating a Bloomberg-like screen for every day of the period one can 

formulate a trading strategy based on actual transaction data with volumes reflecting the 

market environment at that time. Originally the data consisted of more than 12,320,000 

observations for mid, bid, ask prices and volumes for different maturities and exercise 

prices and for both call and put options.  

 Due to the extreme high dimensionality of the data the research had to be 

restricted to the analysis of near ATM options, thus leaving the examination of 

dynamics of the OTM and ITM options for further studies. We have further limited the 

model to trade at the mid prices of both call and put options, but accounted for 

appropriate transaction cost incorporating the bid-ask gap. The resulting 30.800 near 

ATM mid call and put price were taken in the model as the true representation of the 

market. Choosing At-The-Money or near At-The-Money options, with Moneyness 

(S/X) between 0,98 and 1,03 is an economically viable step as a significant proportion 

of total trades takes place within this price range and large amount of liquidity is 

provided to establish a trading strategy. Previous research has also provided support for 

using near ATM options for trading. 

 

 

 

																																																								
1	I’m	 expecially	 grateful	 to	 the	 Corvinus	 University	 of	 Budapest	 and	 all	 the	 supporters	 of	 the	 Financial	
Laboratory	 at	 the	 University	 for	 subscribing	 to	 the	 services	 of	 Bloomberg.	 Without	 the	 availability	 of	 the	
extensive	amount	of	data	downloaded	via	this	terminal	this	article	couldn’t	have	been	written.		
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Fig 4.  Input data for the multicomponent model (Source: own editing, Bloomberg) 

 

Not only do at-the-money S&P 500 options have the highest trading volume (Buraschi 

& Jackwerth, 2001), but also market participants wish to make a bet on future volatility 

are more likely to trade options with this moneyness, than with those with in-the-money 

or out-of-the-money (Ni et al., 2008). In addition Bollen and Whaley (2004) have 

observed that the highest sensitivity to volatility is observed at the class of near ATM 

options. Therefore it was a logical step to choose near ATM options for the trading 

simulations. To create a consistent trading strategy throughout the whole period options 

were classified into three classes (short, medium and long) based on their time to 

maturity (Table 2.). 

Upper	and	lower	boundaries	of	maturity	classes	in	days		
Maturity	class/	Modell	 Lower	boundary	 Upper	boundary	
1st	maturity	class	 15	 45	
2nd	maturity	class	 46	 75	
3rd	maturity	class	 76	 105	

 

Table 2.  Upper and lower boundaries of maturity classes in days (Source: own editing) 
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 For instance in January 2011 a near ATM option expiring in April 2011 was 

classified and traded in the "long maturity" category until mid February, when its time 

to maturity expressed in days reached to 75 days and was reclassified to the "medium 

maturity" category. In the beginning of April 2011 as the time to maturity of this option 

expressed in days fell below 15 days the model ceased to trade with it. Naturally as the 

price of the underlying, thus the near ATM exercise price changed constantly. The 

option traded on a given day was a completely different from that one traded the day 

before. 

 The resulting database consisted of three tables of three maturity classes for 

every day that contained the traded call and put options for a wide range of exercise 

prices. Just as if we were at the given day watching the Bloomberg screen the panel 

showed the last price, the estimated implied volatility, the volume and the ask and bid 

price of a given option for a given maturity and exercise price. Unfortunately implied 

volatility estimations were only available from 2014, therefore we needed to estimate 

them for earlier periods. 

 The time series were partitioned in order to test the validity and efficiency of the 

model in different economic environments: both in periods of market stress and calm. 

The time series spanning through almost a decade from 2006.12.26 to 2015.09.02 was 

divided into 3 periods. The first, from 2006.12.26 to 2009.12.31 was characterized by 

strengthening volatility and by huge jumps in option prices toward the end of 2008 

(Period 1.). Although the second period from 2010.12.30 to 2013.12.30 covered the 

European debt crisis and the United States debt ceiling crisis it showed considerably 

calmer market environment than the previous period (Period 2.). The last period, 

slightly overlapping the previous in the learning sample provides forecasts for 2014 and 

2015 reflecting the least turbulent market environment with low level of implied 

volatilities and steadily increasing asset prices (Period 3.).  

 

6.2 Estimating conditional volatility 

 As pointed out earlier in section 2.5 conditional volatility models readily capture 

the otherwise overlooked stylized facts in financial time series such as volatility 

clustering and thus they provide a better tool for modeling and forecasting volatility. 

Based on previous research on the topic we have specified and fitted an EGARCH(1,1) 

model to the time series of the underlying S&P 500 returns (Fig 5). By capturing not 
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only the autoregressive effects but also the asymmetry in volatility this method offers 

more accurate forecasting method compared to the GARCH(1,1) model. The model was 

specified and fitted with a rolling window method.  

 The parameters of the models were not estimated for the whole time series, but 

by taking only the data for the previous 21 days into consideration. This way the 

estimation reflected the impact of recent events to the structure of the volatility, reacted 

more dynamically for sudden jumps and in turn provided more accurate forecasts. We 

have compared the Akaike and Bayes-Schwartz information criteria of the model to that 

of the GARCH(1,1) and found that EGARCH fits better and lacks the sign bias apparent 

in the former model. As the estimation readily reflects the changes in the volatility of 

S&P 500 returns it is fed into the Artificial Neural network along with explanatory other 

variables, hoping that the additional information on conditional volatility will result in 

an efficient and accurate forecast. 

 

      
Figure 5.  Fitted GARCH& EGARCH models and the S&P 500 squared returns 

(Source: own editing) 

 

The GARCH forecast was further utilized for benchmarking purposes.  An additional 

agent using the GARCH forecasted volatility as an input was also set up, whose trade 

decisions were solely based on the directional change in the conditional volatility. 

Although the implied volatility and the model based conditional volatility largely differ, 

the GARCH(1,1) model is extensively used in the literature for benchmarking purposes 

(Bartels & Lu, 2000; Guo, 2000; Ahoniemi, 2008).  
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7. Volatility forecasting and Option trading  

7.1 Volatility Forecasting Module 

 The Volatility Forecasting Module relies on the returns of the underlying index, 

the forecasted volatility of EGARCH(1,1) model and the database of near-ATM call 

and put option closing prices as input data. The module first calculates or derives 

implied data and creates inputs nodes for the Neural Network by standardizing and 

transforming the data. Previous research has shown that neural networks do perform 

better on transformed dataset and in turn produce more accurate forecast (Atsalakis, 

2009). After feeding the derived and other external nodes to the network it trains on the 

data of 250 business days and by applying the specified network it forecasts for the next 

30 business days. We apply the rolling window method proposed by Hutchinson et al 

and the forecasts for the following 30 days are based on a new network specified, 

trained and validated on data from the previous 250 working days. Finally the 

forecasted volatility is fed to the Option Trading module. 

 Selecting the set of optimal explanatory variables for a neural network is not a 

straightforward task to handle. Based on Tung et al. (2011) we have used the first, 

second and third lagged value of the time series of the implied volatility. The forecasted 

conditional volatility of the EGARCH model was also a key input. The latter has a 

superior explanatory power based on its high relative contribution factor detailed in the 

literature (Donaldson & Kamstra, 1997; Roh, 2007; Tseng et al., 2008; Hajizedah et al., 

2012). We are following Hajizedah et al. (2012), who have used both the daily closing 

price and traded volume of the S&P 500 in hands with the closing price of the 

NASDAQ index to produce a reliable estimate for the volatility of the S&P 500. Also 

both the total traded volume of call and put options were used as input nodes to model 

the scale of trading on the option market (Guo, 2001). Although the VIX index 

accurately models the implied volatility of the S&P 500 for 30 days it could not have 

been used as target in the model as it takes only into account the volatility of a specific 

range of options and calculates a composite measure of implied volatility. As we have 

aimed to give a forecast for the implied volatility of call and put separately and for 

longer maturities we have discarded the VIX and calculated the implied volatility from 

observed prices.  However for measuring the accuracy of the forecast we have applied a 

method used by other researchers and calculated a mean implied volatility. This mean 

was derived from both the near at the money call and put options and then averaged in 
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every maturity class using the equation below, where t denotes the day and i the 

different maturity classes (Tung et al. 2011). 

𝐼𝑉!"#$!%#_! =
𝐼𝑉_𝐶𝑎𝑙𝑙!,t + 𝐼𝑉_𝑃𝑢𝑡!,t

2  

 The implied volatility for a given option was calculated using the reversion of 

the Black-Scholes equation and Newton-Raphson iteration. Given the known 

parameters  (S, K, r, T and c or p) the method substitute a sigma value to the equation 

below and finds the root of the equation by comparing the observed market price and 

BS price of the options and changing the volatility iteratively. The volatility is 

calculated as follows: 

𝜎!!! = 𝜎! −
𝑉!"# − 𝑉!" 𝜎!
∆𝑉!" 𝜎!

∆𝜎

 

, where the 𝜎!is the implied volatility, 𝑉!"# is the observed option price on the market, 

𝑉!" 𝜎!   is the calculated BS price given the sigma and ∆𝜎 is the change in the level of 

volatility (Christou, 2010). Having created the time series of implied volatilities for all 

the maturity classes and for both calls and puts we have obtained six time series for the 

implied volatilities and have used the first, second and the third lag of each variable as 

input nodes. The 10 variables used for forecasting the implied volatility at time (t) as 

target variable were as follows: 

 
1. 1st lag of realized volatility  RVt-1 

2. 1st lag of implied volatility  IVt-1 

3. 2nd lag of implied volatility  IVt-2 

4. 3rd lag of implied volatility  IVt-3 

5. Forecasted conditional volatility EGARCH(1,1) model Cond.volt-1 

6. S&P 500 Index Call Option total traded volume (unit)  VOL_Ct-1 

7. S&P 500 Index Put Option total traded volume (unit)  VOL_Pt-1 

8. SPX traded volume in USD  Volumet-1 

9. S&P 500 Index Price  SPXt-1 

10. NASDAQ Index Price  NSDQt-1 

 

 We have used the Neural Network ToolboxTM of Matlab for specifying and 

fitting a neural network. All input data have been rescaled to fall between -1 and 1 by 

the "mapminmax" function of the software. The time series of the input data for a given 

time period was partitioned as follows. The network was taught on the first 200 

observations and validated the results on the following 50. Than the specified network 
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produced forecast for following 30 days. Next the rolling window for learning-

validation-testing sample rolled over 30 days and specified and taught the network 

based on the information set of the next 250 observations (Fig. 6.). 

 
Figure 6.  Rolling learning-validating-testing window (Source: own editing) 

  

 Allocating relatively large amount of data (250 observation) for learning and 

validating purposes enables the network to incorporate all types of market behavior and 

extremities and thus produce better forecast. As for the test, or forecast sample we 

believe that 30 days is long enough to avoid unnecessary re-specification of the network 

and short enough to avoid disregarding underlying structural changes in market 

environment.  

 As the number of neurons in the hidden layers are subject to specification, and 

has a huge impact on the goodness-of-fit of the model we have run the model to specify 

and fit networks with different number of neurons (16 to 20) in the hidden layers. The 

Levenberg- Marquard algorithm was applied to solve the optimization problem and 

relying on gradient descent the algorithm iterated to find the best fitting parameters of 

the network euphemized as learning process. We have run the described process 100 

times on a given layer, than averaged the forecast and calculated the MSE of the 

goodness of fit based on the equation below: 

MSE_ANN! =
1
𝑇 IV! − FV!

!

!!!

!

  

, where 𝜙 stands for number of neurons in the hidden layer, T for the length of the time 

series and RV!  and FV! for the actual implied and forecasted volatility respectively. 

Based on the MSE of the validation set the Volatility Forecasting Module selected the 

optimal number of neurons in the hidden layers and produced forecasts with the 

corresponding specified network for the following 30 days. After having stored the 

resulting volatility estimations the network rolled over to the next period in the time 

series subsample. Finally the time series of volatility estimates for all rolling sample 
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were summarized and fed to the Option Trading Module. The process is shown on the 

figure below (Figure 7.). 

 

 
Figure 7. Mechanism of the model (source: own editing) 

	
	 We have applied two methods to test the goodness of fit of the volatility 

forecast. As the neural network heavily relies on the MSE of the forecasted value it 

served as a primary tool for measuring accuracy. The directional accuracy of the 

forecast plays an even larger role when forecasts are further utilized in trading strategies 

if such strategies base their decisions on the predicted direction of the variable. In 

volatility forecasting the directional accuracy is reflected in the hit rate and can be 

expressed as the ratio of correctly guessed direction of movements in volatility. If this 

value is below 50% the forecast shows no directional accuracy, if its between 50% and 

55% we assume that the accuracy is weak and when the ratio of correctly guessed 

movements reaches over 55% we can talk about a reasonable model. 

 As we aim to compare the forecasting accuracy of models in different maturity 

classes we first simply compare the MSE values. However should these error measures 

fall close to each other we need to apply econometrical test to test whether they are 

statistically different from each other, or in other words whether the forecasting 

accuracy differs in different maturity classes. The Diebold-Mariano (DM) test is widely 

used in the literature for comparing predictive accuracy of volatility forecasts 

(Ahoniemi, 2008; Park et al., 2014). The DM test is a model free test of forecasting 

accuracy applicable to non-quadratic loss functions and multi period forecasts. The test 

hypothesize that the distribution of errors are non-Gaussian, with a non zero mean and 

exhibit serial correlation (Diebold & Mariano, 1995). In case of two forecasts i we 
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define the forecasting error as 𝑒!" = 𝑦!" − 𝑦! , i=1,2  and the loss differential between 

two forecasts as 𝑑! = 𝑔 𝑒1! − 𝑔 𝑒2t . Two forecasts have equal accuracy if and only 

of the loss differential (𝑑!) has zero expectation for all t. The null hypothesis of the test 

is that the two forecasts have the same accuracy, while the alternative hypothesis states 

that their level of accuracy differs in such extent that the loss differential is not zero. 

The test statistics is computed as follows, where VAR(d) is an estimate of the 

unconditional variance of d.  

 𝐷𝑀 = !
!"#(!)

!

                     𝐻0:𝛦 𝑑! = 0  ∀𝑡, and  𝐻1:𝛦 𝑑! ≠ 0. 

This statistics is asymptoticaly normally distributed and the null hypothesis is rejected if 

the computed DM statistic falls outside the range of !!!
2

  to !!
2

, where !!
2

 is the upper z-

value from the standard normal table corresponding to half of the desired α confidence 

level of the test. In MATLAB applying the 'dmtest' function, developed by Ibisevic 

(2011) is relatively straightforward as the function gives the DM test statistics as output. 

In practice when the errors of two volatility forecasts are compared and the value of test 

statistics fall outside the range ±1,96 we reject the null hypothesis, thus the forecasts 

are statistically different at 95% confidence level. If however the value fall within the 

specified range there is no statistical difference between the goodness of fit of the two 

series. 

 

7.2 Option Trading Module 

 The module is responsible for trading with straddles of call and put options from 

a predefined dataset and bases its decisions on the difference of calculated hypothetical 

prices and observed prices of the option the directional change of the volatility 

forecasted by the Volatility Forecasting Module. 

The main inputs of the module are the set of observed market prices for near ATM call 

and put options, the forecasted volatility from the Volatility Forecasting Module and the 

time series of forecasts of the GARCH(1,1) model for benchmarking purposes. The 

module first collects a near ATM call and put option pair closing prices for dayt and 

dayt+1, with the former serving as an opening price and the latter as a closing price for 

the transaction. The option positions are opened with the close quotes on dayt and 

closed with the close quotes on dayt-1, which is the day for which the volatility forecast 
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is made. The straddle prices are calculated by summing the corresponding option prices 

for a given day. The profit for short and long straddle are calculated as follows: 

𝛱!!!
!"#$ =

((𝐶! + 𝑃!)−  (𝐶!!! + 𝑃!!!))− 𝛾
(𝐶! + 𝑃!)

 

𝛱!!!!!!"# =
(−(𝐶! + 𝑃!)+  (𝐶!!! + 𝑃!!!))− 𝛾

(𝐶! + 𝑃!)
 

𝛾 = ((𝐶! + 𝑃!)+  (𝐶!!! + 𝑃!!!)) ∗  Tr!"#$ 

, where 𝐶!,  𝑃! ,  𝐶!!!, 𝑃!!! are the closing prices for call and put options for dayt and 

dayt-1 respectively, 𝛾 denotes the transaction cost in $ and Tr!"#$ is the transaction cost 

in percent. In this paper we set the level of transaction cost at 1% following the 

guidance of Guo (2001). Naturally the model would not absorb all the transaction 

related cost of the bid ask spread, but might serve as an indicator of profitability 

between different time periods and maturities.  

 As detailed above in each maturity classes options with the nearest expiration 

date were used, until the defined number of days before the expiration date of the 

option, when trading was rolled over to the next expiration date at the given maturity 

class. Therefore the model starts to trade with an option when its time to maturity 

reaches the maximum number of days in the 3rd maturity class, continues trading with 

it through the different maturity classes and cease the trading as it's time to maturity 

falls below 15 days. Options with maturities below 15 days are out of scope as their IV 

behaves erratically, due to lack of liquidity, forced selling obligations and other 

portfolio management issues (Poon and Pope, 2000).  

 The trading strategy bases its decisions both on the difference between the 

calculated model price and the observed market price of the straddle adjusted with 

transaction costs and the filters derived from the change in the level of volatility.  

 Before the actual trading one needs to create the filter, which is basically a 

decision rule weather the module should trade on a given day or not. In straddle trading 

the volatility has to change significantly so that the potential gains offset the incurring 

transaction costs. Having computed the difference of volatility forecasts for each day 

we define an appropriate level of change, or in other words a filter below which level of 

change the model should not engage in trading. Based on the sensitivity analysis we set 
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this value at 1%, which means that the volatility must deviate from its previous value 

with at least 1% so that unnecessary transaction cost wont absorb the profits. 

 Furthermore the model substitutes the forecasted call and put implied volatilities 

into the Black Scholes formula and obtains hypothetical model prices for call and put 

options (𝐶!! + 𝑃!!). Based on previous research we compare the model prices to the 

observed prices (𝐶!! + 𝑃!!) (Ahoniemi, 2008; Guo, 2000). We further develop this 

comparison by taking into account transaction costs (𝛾) defined earlier. The decision 

rule of the model is as follows. Should the straddle from model prices worth more than 

that from the observed market prices and the transaction cost the straddle is 

underpriced, so we engage in a long straddle strategy believing that level of volatility is 

expected to rise. 

 

 𝐶!! + 𝑃!!  >  𝐶!! + 𝑃!! + 𝛾 

 

 On the other hand should the straddle from observed market prices worth more 

than that from the model prices and the transaction cost the straddle is overpriced, so we 

engage in a short straddle strategy expecting the volatility to fall. 

 

𝐶!! + 𝑃!! >  𝐶!! + 𝑃!! + 𝛾 

 

 All positions were opened on dayt were closed on the following day (dayt+1) to 

avoid loss due to delta change in the portfolio. Straddles are only near delta and gamma 

neutral for a very limited time, and given that intra-day data could not have been 

obtained we were unable to offset this impact by engaging in a delta neutral strategy. 

Besides calculating the profits based on the method described above the module also 

traded with the forecasts from the GARCH(1,1) model parallel in order to evaluate the 

efficiency of the ANN with a benchmark strategy. Given the unlimited amount of 

possible loss and the limited gain inherent in the framework of straddle trading the 

module traded on the first four business days of the week. Positions opened on the last 

business day of the week were held during the weekend and the potential large-scale 

move in the price of the underlying coupled with the impact of news on non working 

days would have resulted in unforeseeable changes in option prices and deteriorated the 

profitability of the strategy. 
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 The results of the trade were evaluated with the annualized profit and Sharpe 

ratio for both the agent trading with neural network and the one with the GARCH 

model and are presented in section 8. Both agents have started trading with a portfolio 

of 100 $ worth in the beginning of the period and profits were continuously reinvested. 

 The Sharpe ratio was calculated as follows, where the σ! is the variance r! is the 

return of the portfolio and r! is the risk free rate. 

𝑆!"#$%& =
𝑟! − 𝑟!
𝜎!

 

 Given that we aimed to compare the forecasting ability and the profitability of 

different tenors, accuracy measures of the volatility forecast are also listed alongside the 

numbers on profitability. Not only have we presented the corresponding MSE value and 

the Hit rate for the neural network based forecast, but we have also compared the 

forecasting efficiency between tenors in a given time period with the Diebold-Mariano 

test. As the GARCH forecast the latent conditional volatility we could not measure the 

goodness of fit of this volatility model, thus it was only tested indirectly in trading. 

8. Results 

8.1 Forecasting accuracy in different time periods and tenors 

 In this section we are going to present the results of the model for each time 

period. Starting with the goodness-of-fit of the forecast we further detail the evolution 

of forecasting accuracy in different time periods and through different maturity classes. 

Than we present the trading results for each period and in every maturity class. For 

measuring performance not only do we apply the annualized return, but we also 

calculate the risk weighted return of the period with the Sharpe ratio. Moreover we 

present the associated MSEs and hit rates in line with the profitability measures 

enabling us to make further inferences on the relation between the profitability and the 

goodness of fit of the forecast. In each period the results of the corresponding GARCH 

based trading strategies are listed and by benchmarking the result of the neural network 

to that of the GARCH a conclusion is drawn on the efficiency of the model. Finally we 

benchmark the results of the model to that of a buy and hold strategy conducted during 

the same period with the S&P 500 index, thus putting the result of this article into larger 

perspective.  
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 Taking a closer look on the average mean square error values of the forecast for 

each period we detect an increasing trend as the average number of days to maturity rise 

(Table. 3.).  Apparently the longer the maturity of the option the less reliable the 

estimate provided by the forecasting model for the future value of the volatility.  

 

    
Table 3. Mean Square errors for volatility forecasting (source: own editing) 

 

Quite understandably in higher tenors future expectations on the price of the underlying 

are more heterogeneous and relies on several factor. Regarding the vertical dimension 

of the table we note a decreasing trend between the error measures of the first and the 

following periods. Although volatility trading deemed profitable in late 2009 it could 

not have offset the impact the huge losses incurred towards the end of 2008 and early 

2009, hence the higher value for 2007-2009. The forecasting accuracy in the second 

period (2011-2013) is not as high as in the third period. However if we compare the 

MSE values of the first tenors to those of the second we note that contradicting the 

previously observed decreasing trend the error measures of the first maturity class are 

considerably lowers than those for the second. Consequently we expect the level of 

profitability from 2007-2009 to 2011-2013 to fall, but not at such extent, as it should 

from one maturity class to the other. 

 

  	 
Table 4. Hit rates for volatility forecasting (source: own editing) 

  

 Another indicator of forecasting accuracy is the hit rate, which is the ratio of 

correctly guessed movements of the future volatility. Given that the straddle trading 

relies heavily on the directional forecast grabbed by the hit rate, this indicator plays an 

Period/Maturity 
class 1st class 2nd class 3rd class

2007-2009 0,005450 0,002372 0,004476
2011-2013 0,000464 0,000484 0,002996

2014-2015 0,000476 0,000370 0,001458

Mean	Square	Errors	for	volatility	forecasting	with	ANN

Period/Matur
ity class 1st class 2nd class 3rd class

2007-2009 49,17% 51,67% 52,50%
2011-2013 55,83% 58,33% 53,33%

2014-2015 48,33% 50,00% 50,83%

Hit	rate	for	volatility	forecasting	with	ANN
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even greater role in profitability than the actual deviance of the forecast from the "true" 

value, portrayed by the MSE. Based on the table above it can be concluded that the 

model as whole produces hit rate values around 55%, thus it generally has reasonable 

accuracy (Table 4). However this accuracy varies within different time periods and 

maturity classes. The first time period (2007-2009) shows weak results, with the hit rate 

falling below 50% in the first maturity class and just balancing slightly over it in other 

tenors. This may largely due to the turbulence of late 2008, where the model was not 

able to produce reliable estimates. Quite reasonably the inability of the network to 

predict future volatility is mainly apparent in the first maturity class, as the investor's 

expectation regarding short term implied volatility was heavily affected by the financial 

turmoil and inconsequence time series of implied volatility was characterized with 

sudden jumps, structural breaks and movements never have seen before. The directional 

accuracy have slightly improved in the second and third period, but as the 

corresponding high MSE values have shown the forecasting ability of the model 

remained poor in the period of 2007-2009. The following period shows higher hit rate 

accuracies around 53%-58% reaching its local maxima in the second maturity class and 

shrinking moderately to the third. In 2014-2015 hit rate accuracy is generally lower than 

in the previous period in all maturity classes with its level falling even below 50% in the 

first maturity class. In section 8.2 we further elaborate on the possible causes of the 

deterioration of the model in this time period. 

 Before moving on to the presentation of the trading results we analyze the 

change in the level of forecasting accuracy as we trade options with longer time to 

maturities on a sample from 2012 (Fig 8, 9, 10). In the first maturity class the figure 

shows that the forecasted volatility (red line) approximates the actual volatility in the 

same tenor (blue line) with high precision (Fig. 8.). The corresponding hit rate accuracy 

is shown with dots on the bottom of the figure, with 1 meaning the correctly guessed 

and -1 the missed individual forecasts.  
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Figure 8. Forecasting accuracy and hit rate in the first maturity class in 2012  (source: 

own editing) 

 

 Even though the forecasted values in the second maturity class (red line) 

estimate the trend of the actual volatility well (blue line) they cannot correctly reflect 

the detailed fluctuation of the implied volatility, specifically in the first quarter of the 

year (Fig. 9.). If we compare the MSE values for the two forecasting series we find that 

the one for the second tenor is not significantly higher compared to that of the first one.  

 

 
Figure 9. Forecasting accuracy in the second maturity class in 2012  (source: own 

editing) 

 In order to verify the observation that the forecasting accuracy in the second 

tenor is smaller we have run the Diebold-Mariano statistical test introduced and detailed 

in section 7.1. The critical values for the test were 0,2505 so in every usual confidence 
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level 95%, 99% we accept the null hypothesis that the loss difference is zero and the 

two forecast has equal forecasting accuracy. The hit rate of correctly guessed volatility 

movements for the second period slightly exceeds that for the first period and result in 

higher profits in this section of the option market. 

 

 
Figure 10. Forecasting accuracy in the third maturity class in 2012  (source: own 

editing) 

 Slightly different observations can be drawn from the corresponding figure for 

the third maturity class where the forecasted values (red line) seemingly co-move with 

the actual volatility (red line) during the whole period, but not only do the forecasted 

time series completely fails to capture the fluctuation and small changes in the series of 

the target volatility, but it also consistently overestimates the level of volatility (Fig. 

10.). In accordance with the previous observation Hit rate for this segment of option 

market decreases significantly, which in turn will result in losses detailed in section 8.2. 

The MSE value increases with almost 600% from the previous maturity classes 

providing further evidence for the deterioration of forecasting accuracy. (Table 3.). We 

have also examined whether the forecasting errors of the third and the other two 

maturity classes are equivalent just to make sure that and found that the null hypothesis 

of similar errors can be rejected with huge DM statistic values (-9,81 and -8,397). 

 The figures for forecasting accuracy and hit rates for the period 2007-2009 

(Figures 16, 17, 18) and period 2014-2015 (Figures 19, 20, 21) are presented in the  

appendix. 
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 All in all there is no linear relationship between the decrease of forecasting 

accuracy and the time to maturity of the options traded. As the hit rates and MSE values 

show the forecasting power in the second maturity class generally over perform that in 

the first tenor (Table 3 and 4). Moving on to the trading result we present further results 

on the profitability of trading in each maturity class and draw the conclusion on the 

relation between the accuracy and amount of profit generated. 

 

8.2 Trading results 

 A trading simulation detailed in section 7.2 has been conducted in each time 

period and maturity classes. In this section we are going to present the result of the 

research by first analyzing the summary tables of trading results for each period. Apart 

from returns and Sharpe ratios we list the corresponding mean square errors and hit 

ratios to connect the forecasting accuracy with the profitability. Results are presented 

for each time period in chronological order and profitability of each tenor is further 

analyzed in the second time period. 

 The following table summarizes the profits and losses for the period of 2007-

2009 (Table 5.). Due to extreme market environment of late 2008's and early 2009's the 

period as a whole shows large-scale losses in all maturity classes. The corresponding 

Sharpe ratios reflect the market stress and the huge standard deviation of the returns 

appropriately.  

 

Trading	results,	Sharpe	ratios,	MSE-s	and	Hit	rates	2007-2009	
Maturity	
class	

1st	class	 2nd	class	 3rd	class	
ANN	 GARCH	 ANN	 GARCH	 ANN	 GARCH	

Return	(%)	 -69,70%	 -97,90%	 42,25%	 -44,57%	 -79,65%	 -39,88%	
Sharpe	 -4,81	 -6,08	 3,50	 -3,51	 -5,01	 -3,14	
MSE	 0,005450	 		 0,002372	 		 0,004476	 		
Hit	rate	(%)	 49%	 		 52%	 		 53%	 		

 

Table 5. Trading results, Sharpe ratios and MSE-s 2007-2009  (source: own editing) 

A negative relationship is detected between the mean square error and the returns, but 

the losses are bigger in the third class than in the first despite of its smaller MSE value. 

Profit could only be generated when we engaged in trading options with 2 months 

maturity. One possible explanation for that is that overreaction of investors, fear and 
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fire selling to bad news materialize in the price of options with 1-month maturity and 

has smaller impact on options with longer maturities. 

 The benchmark GARCH-based strategy generates losses in all segment of the 

option market examined in this paper. The higher the time to maturity the smaller the 

loss incurred when trading strategy is based on the GARCH model. The result suggests 

that the GARCH, which forecast the conditional volatility, is unable to capture the 

sudden and structural changes in the time series of implied volatility, hence the losses in 

all segments. If we take a look at the forecasting accuracy of the model in the first 

option class the hit rate of the model shamefully fall below 50% producing more 

incorrect than correct guesses on the direction of the future volatility and thus proves to 

be inadequate. Despite of the fact that the hit rate strengthens back to 52-53% huge 

losses still occur in the third maturity class. All in all the performance of the model is 

very poor in this time period, but as the benchmark GARCH model and the general 

market environment produces similar losses we can not properly evaluate its validity. 

Plots on the profitability of the ANN and GARCH based strategies for the period of 

207-2009 can be found in the appendix (Figures 22,23,24). 

 The following time period from 2011 to 2013 shows more promising results as 

large amount of profits are achieved in all the three segment of the option market (Table 

6.). Although the level of profit is declining as we trade options with longer time to 

maturity, an impressive 53% return can be reached even in the third tenor. The 

corresponding high Sharpe ratios (6.92, 3.76, 3.08) also demonstrate the power of the 

trading strategy as portfolios with Sharpe ratio values above 2 are considered as 

excellent investment opportunities.  

 

Trading	results	Sharpe	ratios	and	MSE-s	2011-2013	

Maturity	class	
1st	class	 2nd	class	 3rd	class	

ANN	 GARCH	 ANN	 GARCH	 ANN	 GARCH	
Return	(%)	 128,09%	 -39,84%	 60,63%	 -49,97%	 52,62%	 -46,44%	
Sharpe	 6,92	 -3,31	 3,76	 -5,78	 3,08	 -4,14	
MSE	 0,000464	 		 0,000484	 		 0,002996	 		
Hit	rate	(%)	 56%	 		 58%	 		 53%	 		
	

Table 6. Trading results Sharpe ratios and MSE-s 2011-2013  (source: own editing) 

 

 This period also shows a positive relationship between the annual profits 

achieved and the goodness-of-fit of the volatility forecast, given that as MSE values 
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increase the profitability of the model diminishes markedly. We must note that even 

though that the Diebold Mariano test judged the forecasting accuracy of the model in 

the first and second class equal detailed in section 8.1, profits are almost twice as high 

in the former period undermining the equivalence of forecasting accuracy and 

profitability and questioning the causality between the goodness of fit of the forecast 

and the trading results. 

	
 The benchmark GARCH model produced huge losses in every maturity class 

throughout the whole period lagging behind the results of our models. Generally despite 

of the fact that both the European debt crisis and the US debt ceiling crisis took place 

during this period the model performed considerably well. This might actually be 

attributed to the general observation that volatility trading tends to be more profitable 

closely following periods of market stress. 

 Moving on to the figures on the profitability of the three maturity classes we can 

find the plot of portfolio values for both the neural network based and the GARCH 

based agent in the upper part of the figure. Below this plot we graphed the time series of 

the change in the implied volatility mainly to demonstrate the impact of volatility on the 

profitability of the model (Figure 11).  

 

  
Figure 11. Profitability of ANN and GARCH based strategies in the 1st maturity class 

2011-2013  (source: own editing) 

The figure above presents these features for the first maturity class in 2011-2013 with 

the red line representing the proceeds of the neural network and the blue line those of 

the GARCH portfolio. The ANN based portfolio value is increasing steadily with 
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infrequent jumps, the timing of which largely correlate with a similar change in the 

level of implied volatility. The ANN-based portfolio show huge profits towards the end 

of the year, while the GARCH-based decrease markedly almost halving its initial value 

by December. The jumps in the value of ANN-based portfolio correlate with large-scale 

movements in the time series of volatility. 

 Portfolio values in the second maturity class show less impressive results. Jumps 

and large movements coincide with those in the time series of the implied volatility and 

we can also observe the beneficial effect of the filters in the ANN portfolio value of not 

letting the model trade in every day. The benchmark GARCH model produce large 

jumps and generates significant losses towards the end of the period.  

 

 
Figure 12. Profitability of ANN and GARCH based strategies in the 2nd maturity class 

2011-2013  (source: own editing) 

 

 Profitability in the third maturity class is similar to that in the second tenor. The 

ANN portfolio grows in value and reacts to the jumps and movements in the underlying 

volatility, while the fluctuation in the volatility heavily affects the GARCH portfolio 

value towards the end of the year. All in all the model based trading beats the GARCH 

based benchmark consistently throughout the whole period and generates two digit 

returns (Table 6.). 
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Figure 13. Profitability of ANN and GARCH based strategies in the 3rd maturity class 

2011-2013  (source: own editing) 

 
 The last and most recent set of observation from 2014-2015 show distinctly 

different results compared to those of the previous period, even though forecasting 

accuracy in each maturity class is similar to those in the 2011-2013 period (Table 6.).  

	
Trading	results,	Sharpe	ratios,	MSE-s	and	Hit	rates	2014-2015	

Maturity	class	
1st	class	 2nd	class	 3rd	class	

ANN	 GARCH	 ANN	 GARCH	 ANN	 GARCH	
Return	(%)	 -41,57%	 -97,50%	 -35,00%	 -5,00%	 -25,00%	 -10,00%	
Sharpe	 -3,96	 -8,06	 -3,56	 -0,54	 -3,77	 -1,15	
MSE	 0,000476	 		 0,000370	 		 0,001458	 		
Hit	rate	(%)	 48%	 		 50%	 		 51%	 		
	

Table 7. Trading results Sharpe ratios and MSE-s 2014-2015  (source: own editing) 

  

Once again the hit rate fells below 50% in the first maturity class creating a major 

deficiency in the model. Despite of the fact that the MSE has not increased significantly 

between the two periods large amount of losses were generated in this period as 

opposed to the double digit profits in the period of 2011-2013. Losses coupled with low 

hit rates kept appearing in every maturity class undermining the general validity of the 

model. Although losses decrease as we trade with options with higher maturity they are 

still pose a systematic problem. To examine this irregularity we examine the portfolio 

values of the model and GARCH portfolios trading in the 1st maturity class during this 

period (Figure 14). The figure shows that despite a promising start until the first quarter 

of the year the model simply can't benefit from the changes in the volatility and steadily 
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looses the initial investment over time. Even more alarmingly the same patter appears in 

the other maturities (Figure. 25 and 26). 

 

 
Figure 14. Profitability of ANN and GARCH based strategies in the 1st maturity class 

2014-2015 (source: own editing) 

 

 There are several explanations for this phenomenon. First and the most 

obviously the period of 2014-2015 is simply not that turbulent that extra profit could be 

generated from directional volatility trading. In the majority of trading days change in 

volatility either remains below the filter or after taking into account transaction costs 

deems unprofitable to trade as incurring costs absorb the profits and slowly decay the 

invested capital. Several market indicators point into this direction. The value of VIX 

index has fallen more than 50% from mid 2012 to mid 2014 showing a significant 

decrease in the general level of volatility and uncertainty. Moreover he characteristics of 

the slowly decaying portfolio value also provide a support for this theory. On the other 

hand it is equally possible that the market has "learnt" the results of the model, meaning 

that the current price of the options observed on the markets is already incorporated the 

mispricing and no further extra profits can be achieved by applying a neural network for 

forecasting the volatility. The low MSE values and the unresolved difference in 

profitability compared to the corresponding maturities in the previous time period 

provide support for this suspicion. In order to verify our observations and reach a 

reassuring conclusion further simulation of trading is needed in a late 2015-2016 time 

period. 
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 Finally putting the result of the model into a bigger perspective we have 

simulated a buy and hold strategy with the S&P 500 index for the corresponding time 

spans in each period (Table 7.). The results were as follows. 

  	

Trading	profits	of	the	best	case	model	and	the	S&P	500	B&H	strategy	
Period/	Model	 Model	profit	 S&P	500	Buy&	Hold	
2007-2009	 42,25%	 -10,90%	
2011-2013	 128,09%	 17,63%	
2014-2015	 -25,00%	 2,50%	

 

Table 8. Trading profits for ANN and market benchmark strategy (source: own editing) 

 By comparing the results of the trading based on our model and the one of a buy 

and hold strategy on the underlying index we can conclude that the former generated 

higher profits than the latter. It is important to note however that the table represents the 

"best case scenario" meaning that we presented the highest return the model can 

generate in the given time period. The result suggests the from 2009 to 2013 the option 

trading framework based on the prediction of an artificial neural network and enhanced 

by an EGARCH outshines the buy and hold strategy on the underlying index.  

 

 In order to get a broader view on the profitability of the trading strategy its 

sensitivity to the level of the filter on volatility and of the transaction cost should also be 

analyzed. We have therefore conducted a sensitivity analysis on the portfolio value by 

changing the volatility filter on the 0%-4% and the transaction cost on the 0%-3% grid. 

Profits have reached as high as 650% by setting both the transaction cost and the filter 

at the artificial level of 0%. Profits have sharply declined as the transaction cost was 

increased to 1% and diminished completely when the level of cost exceeded 1,5%.  
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Figure 15. Sensitivity of the portfolio value to transaction costs and volatility filters 

(source: own editing) 

 

An increase in the level of volatility filter also had a similar negative impact on profits, 

but not at such extent as the transaction cost and in some cases the effect reversed and 

by increasing the level of filter even more profits were generated. This would mainly be 

due to the beneficial effect of filter that it prevents small-scale trades and reduces 

unnecessary transaction costs. It is clearly visible on the upper regions of the surface 

that profit increase steadily until the level of filter reaches 1% and than decreases 

rapidly until the 2% level just to start increase again until 3 % level. Seemingly the 

returns are distributed in a way that 1% filter maximizes the profits and by increasing 

the limit for change in the volatility we reduce the profits. If however the level of filter 

is set at 3% large amount of small-scale, cost generating trades disappear and the 

profitability increases once again. 
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9. Conclusion 
 

 In the past sections we have presented an integrated multicomponent model to 

forecast volatility and then values to build a successful option straddle trading strategy 

relying on the forecasted values. Following the brief introduction of the topic and the 

hypotheses we have moved on to detail the various methods of volatility forecasting 

paying special attention to neural networks and their application in estimating the future 

volatility. Furthermore we detailed the advantages and drawbacks of the Black-Scholes 

option-pricing model offering a possible enhancement of the model through 

hybridization with neural networks. Then we have elaborated on the topic of volatility 

trading by providing of a summary of recent research on the topic. In the second part of 

the paper we have proposed a multicomponent model to forecast volatility and trade 

options incorporating all the features detailed in the first part. The remaining of the 

paper described the model by first detailing the data preprocessing and the estimation of 

input variables and later giving an account on the mechanism of the model. The results 

are presented and analyzed in the last part of the paper.  

 At the beginning of the article we have established three hypotheses that are yet 

to be proved. The first hypothesis was that the Artificial Neural Network provides a 

more accurate volatility forecast than does the GARCH model. As trading results in 

section 8.2 showed the trading strategy relying on the neural network outperform that of 

using the GARCH model forecasts in almost all time periods and maturity classes.  

 The second hypothesis stated that abnormal profits could be gained by feeding 

the forecasted future volatility into a trading strategy even after taking transaction costs 

into account. As demonstrated in the trading results abnormal profits did occur in the 

second and in some cases in the first time period taking into account the 1% transaction 

cost. Consequently should the 1% level correctly model the transaction cost the option 

market was inefficient in certain periods from 2009 to 2013, but this inefficiency 

seemed to have disappeared by mid 2014 resulting in slowly decaying portfolio values 

and the inefficiency of the model. 

 The third and last hypothesis assumed that options with different time to 

maturity reacts differently to the forecast of volatility, thus the level of profitability 

achieved differs in every segment of the option market. We have demonstrated in 

section 8.1, that the forecasting accuracy of the model changes with the increase of 
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average time to maturity, forecasts for the second maturity class were better than for the 

first maturity class in most cases. Not only did we justify the hypothesis with the change 

in the MSE values, but also with the different levels of profitability incurring in each 

maturity class. Profits shrank and even turned to losses as the average time to maturity 

of traded options has risen to 90 days. Therefore we can conclude that the model shows 

superior explanatory power compared to that of the GARCH model and the trading 

results in different levels of profitability in each maturity classes, which can also be 

regarded as different segment of the option market. Finally the losses incurring in 2014-

2015 provide evidence for the assumption that on its own providing a forecast with an 

acceptable level of goodness-of-fit does not necessarily lead to abnormal profits and 

that the market environment has a huge impact on the profitability of the trading 

strategy. Furthermore the this observation reflects upon the dilemma of the useful 

lifetime of an integrated forecasting an trading model, as to how long can we reach 

abnormal profits with a specific strategy before the market learns and applies its rules 

and force us to look for new more promising models.  

 In order to build the model and perform the analysis within the given model 

framework a few limitations had to be introduced. Firstly the trading simulation lacks 

stop-loss limit that would define the distribution of possible gain and loss incurring in 

every trade cycle. Secondly transaction cost is set at 1% level, which shows the 

difference between the models and is useful assumption for ranking and classifying, but 

might not actually cover the bid ask spread applied by the market. We could either trade 

with bid and ask prices instead of mid or set the level of transaction cost to absorb bid-

ask spread. 

 In the future we are planning to further extent the boundaries of the research 

towards several directions. The first goal would be to take into account the bid-ask 

prices and create a model that alters standard assumptions and trades not on daily bases, 

but on higher frequencies using intra-day data.  

 Another interesting direction would be the inclusion of in-the money and out-the 

money call and put prices. Should we feed the model with price, implied volatility or 

other features derived from these options we might increase profitability or even trade 

with options with other maturities. Not less intriguing question is the implied volatility 

of options with maturities less than 15 days. These options produce sudden movements 

and jumps and reflect the liquidity of the market as well the short expectations of 

market participants'. The additional information derived from these assets might serve 
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as additional input node to any option-pricing model accounting for sudden shocks. We 

might as well turn our attention to intraday prices of options and by applying machine 

learning techniques establish trading strategy at that frequency of the market. Trading 

with options for individual stocks, instead of indexes is also an interesting field for 

further research. More volatile, but liquid stock options such as the options for Apple, 

Tesla or other tech firms might prove to be even more profitable in trading. It would 

also be interesting to apply the model to currency options. By providing huge amount of 

liquidity currency options are suspected to be more efficient on daily basis, but 

temporary inefficiencies might be found examining intra-day data. 

 In terms of methodology a plausible extension of this research would be to 

include Support Vector Machine or other machine learning technique and its 

comparison with neural networks. We are expecting to find similar level of forecasting 

ability in terms of MSE, but different level in the profitability of corresponding trading 

strategy.  

 The novelty of this paper lies in the followings. Although many have forecasted 

both implied and realized volatility using different methods few have proved its 

effectiveness by establishing an option trading strategy. The article is the first to 

compare the profitability levels of trading with option in different tenors. The results 

have confirmed that options in higher maturity classes tend to underperform those in 

lower tenors. Secondly a few scholars have examined the impact of market calm and 

stress to the accuracy of forecast in terms of error measures. This paper examines the 

impact of different economic environments to the level of profitability not by 

comparing the error measure, but also by conducting a trading simulation. The results 

have shown that although change in the error measures negatively correlate with the 

profitability in general, in the periods of market stress the relative accuracy of the 

forecast doesn't have an impact on the profitability of the strategy. 

 Finally as most of the research on option trading worked with pre-crises data, 

the article is a pioneer in researching on post-crises dataset spanning from 2011 to 2015. 

Hopefully, the result of this paper will spur others to conduct further research on the 

topic and on the efficiency of the option market.  
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Appendix 1: Figures 
	

 
Figure 16. Forecasting accuracy in the first maturity class in 2007-2009 

 
 

 
Figure 17. Forecasting accuracy in the second maturity class in 2007-2009 

 
 

 
Figure 18. Forecasting accuracy in the third maturity class in 2007-2009 
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Figure 19. Forecasting accuracy in the first maturity class in 2014-2015 
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Figure 26. Profitability of ANN and GARCH based strategies in 2014 (3rd class) 
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Appendix 2: Codes 
1.	Volatility	modeling	in	R,	specifying	and	fitting	an	ARMA(p,q)-GARCH(p,i,	q)	and	
EGARCH(P,Q)	models	
	
######################Modeling	ARMA(p,q)	-	EGARCH()	models	################################	
###################################################################################	
	
#Downloading	data	from	Yahoo	Finance	-	S&P	500		

		library('quantmod')	
		getSymbols("^GSPC",	from	="2007-06-30",	to	=	"2015-09-29")	
		data.ts	<-	GSPC	
		chartSeries(Ad(data.ts))	
		colnames(data.ts)	
		start(data.ts)	
		end(data.ts)	

	
#Data	preprocessing	and	calculating	returns	

		data.ts	=	data.ts[,	6,	drop=F]	
		plot(data.ts)	
		head(data.ts)	
		data.ret	=	dailyReturn(Ad(data.ts),	type='log')	

	
#Creating	subsamples,	indexing	depends	on	the	size	of	the	sample	

		Period1_ret<-	data.ret[150:450]	
		Period2_ret<-	data.ret[700:950]	
		Period3_ret<-	data.ret[950:1250]	

	
#Fitting	the	adequate	ARMA	model	to	the	mean	equation	for	every	subsample	
			 		install.library('forecast')	

		library('forecast')	
		Period1_ARMA_fit	<-	auto.arima(Period1_ret,	max.p=3,	max.q=3,	ic=c("aic"))	
		Period2_ARMA_fit	<-	auto.arima(Period2_ret,	max.p=3,	max.q=3,	ic=c("aic"))	
		Period3_ARMA_fit	<-	auto.arima(Period3_ret,	max.p=3,	max.q=3,	ic=c("aic"))	

	
#Testing	residuals	/period	needs	to	be	changed	

		res_SPX<-Period1_ARMA_fit$residuals	
		res2_SPX<-res_SPX^2;	plot(res2_SPX)	
		Box.test(res2_SPX,	type="Ljung-Box",	lag	=	10)	
		library("FinTS")	
		ArchTest(res2_SPX)	

	
#Specify	and	fit	an	adequate	rolling	GARCH	model	for	each	subperiod	
#	Given	the	rolling	characteristic	of	the	model	only	the	number	of	corresponding		
#	mean	equation	parameters	need	to	be	substituted	into	the	equation	

		library('rugarch')	
		garch11.spec	=	ugarchspec(variance.model	=	list(garchOrder=c(1,1)),		
																												mean.model	=	list(armaOrder=c(0,2)))	

			
		SPX.garch11.roll	=	ugarchroll(garch11.spec,	Period1_ret,	n.ahead=1,	
																														forecast.length	=	250,	
																														refit.every=21,	refit.window="moving")	

	
#	Checking	goodness-of-fit	of	the	model	

		data.garch11.fit	
	
#	Plotting	and	saving	conditional	volatility	of	the	GARCH	model	

		condvolrollgarch11<-SPX.garch11.roll@forecast$density	
		plot(SPX.garch11.roll@forecast$density$Sigma[500:1000],	type='l',	col='red')	
		sigma=as.data.frame(SPX.garch11.roll,which="sigma")	
		plot(sigma)	
			
		mentes2	<-	condvolrollgarch11	
		write.csv(mentes2,	"garch11_roll.csv")	

	
#	Specifying	and	fitting	an	EGARCH	model	rolling	method	armaorder	must	be	altered	

		egarch11.spec	=	ugarchspec(variance.model	=	list(model="eGARCH",	garchOrder=c(1,1)),		
																													mean.model	=	list(armaOrder=c(0,2)))	
			
		SPX.egarch11.roll	=	ugarchroll(egarch11.spec,	Period1_ret,	n.ahead=1,	
																															forecast.length	=	250,	
																															refit.every=21,	refit.window="moving")	
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#	Checking	goodness-of-fit	of	the	model	
		data.egarch11.fit		

	
#	Plotting	and	saving	conditional	volatility	of	the	GARCH	model	

		condvolrollegarch11<-SPX.egarch11.roll@forecast$density	
		plot(condvolrollegarch11$Sigma,	type='l',	col='red')	
		mentes2	<-	condvolrollegarch11	
		write.csv(mentes2,	"egarch11_roll.csv")	

	
###################################################################################	
	
2.	Visual	Basic	for	Application	codes:	Implied	volatility	estimation	and	
Newton_Raphson	method	
	
#	The	function	prices	the	European	call	or	put	option	based	on	the	Black-Scholes	differential	equation	with	Strike	price,	
Excercise	price,	volatility,	risk	free	rate,	Time	to	maturity	and	dividend	rate		as	input	variables.	
	
Function	EuropeanOption(CallOrPut,	S,	k,	v,	r,	T,	q)	
Dim	d1	As	Double,	d2	As	Double,	nd1	As	Double,	nd2	As	Double	
Dim	nnd1	As	Double,	nnd2	As	Double	
	
				d1	=	(Log(S	/	k)	+	(r	-	q	+	0.5	*	v	^	2)	*	T)	/	(v	*	Sqr(T))	
				d2	=	(Log(S	/	k)	+	(r	-	q	-	0.5	*	v	^	2)	*	T)	/	(v	*	Sqr(T))	
				nd1	=	Application.NormSDist(d1)	
				nd2	=	Application.NormSDist(d2)	
				nnd1	=	Application.NormSDist(-d1)	
				nnd2	=	Application.NormSDist(-d2)	
									
								If	CallOrPut	=	"Call"	Then	
												EuropeanOption	=	S	*	Exp(-q	*	T)	*	nd1	-	k	*	Exp(-r	*	T)	*	nd2	
								Else	
												EuropeanOption	=	-S	*	Exp(-q	*	T)	*	nnd1	+	k	*	Exp(-r	*	T)	*	nnd2	
								End	If	
End	Function	
	
#	The	function	uses	the	Newton-Raphson	iteration	to	give	an	estimate	to	the	volatility	of	the	option	
	
Function	ImpliedVolatility(CallOrPut,	S,	k,	r,	T,	q,	OptionValue,	guess)	
				Dim	epsilon	As	Double,	dVol	As	Double,	vol_1	As	Double	
				Dim	I	As	Integer,	maxIter	As	Integer,	Value_1	As	Double,	vol_2	As	Double	
				Dim	Value_2	As	Double,	dx	As	Double	
					
				dVol	=	1e-05	
				epsilon	=	1e-05	
				maxIter	=	100	
				vol_1	=	guess	
				I	=	1	
								Do	
												Value_1	=	EuropeanOption(CallOrPut,	S,	k,	vol_1,	r,	T,	q)	
												vol_2	=	vol_1	-	dVol	
												Value_2	=	EuropeanOption(CallOrPut,	S,	k,	vol_2,	r,	T,	q)	
												dx	=	(Value_2	-	Value_1)	/	dVol	
												If	Abs(dx)	<	epsilon	Or	I	=	maxIter	Then	Exit	Do	
												vol_1	=	vol_1	-	(OptionValue	-	Value_1)	/	dx	
												I	=	I	+	1	
								Loop	
				ImpliedVolatility	=	vol_1	
End	Function	
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3.	Matlab	codes:	Multicomponent	model	codes:	volatility	forecasting	and	option	
trading	modules	and	Diebold-Mariano	test		
	
%% 1.Volatility Forecasting Module 
% The module forecasts the future values of implied volatility averages 
% using 13 explanatory variable in 'inputom.csv' file. Data is arranged 
% rowwise facilitating the standardization with the target variable in the 
% first row.The j loop index must be altered according to the length of the 
% number of forecasted days (2nd parameter) and the full length of the time 
% series (3rd parameter). The output test variable summarize the forecasted 
% volatility in each loop, feeding them to the Vol_fcst variable, which is 
% the output of the module. 
for j=0:30:240 
    [Input, cs]=mapminmax(inputom(2:11,1+j:250+j), -1,1); 
    [Target, ts]=mapminmax(inputom(1,1+j:250+j), -1,1); 
    iteracio=100; 
        for p=16:20 
            for k=1:iteracio  
                setdemorandstream(491218380+k); 
                hiddenLayerSize = p; % p=no. of neurons in hidden layer 
                net = fitnet(hiddenLayerSize); 
                 
                %Dividing the sample first 60 obsv valid, last 190 training 
                net.divideFcn = 'divideind'; 
                net.divideParam.trainInd = 1:200; 
                net.divideParam.valInd   = 201:250; 
                net.inputs{1}.processFcns = {}; 
                net.outputs{2}.processFcns = {}; 
                net.trainFcn = 'trainlm';   
                net.performFcn = 'mse';   
                 
                %Training of the network 
                [net, tr]=train(net,Input,Target); 
                outputs = net(Input); 
                Output_summa(k,:)=outputs; 
                 
                %MSE calculation, searching for minimal MSE 
                Output(k,:)=mapminmax('reverse',outputs,ts); 
                performance(k,p-9) = mse(net,Target,outputs); 
            end 
            hiba=mean(Output_summa(1:100,:)); % average of iterations 
            x=mse(net,Target(:,201:250),hiba(:,201:250)); % arrange mse-s in x vector 
            Emese(2,p-15)=x/50; %MSE values for all ps 
            Emese(1,p-15)=p; % No of neurons in hidden layer 
            Atlagvol(p-15,:)=mean(Output(1:100,:)); % vector for validation 
        end 
         
            lx=find(Emese(:)==min(Emese(:))); 
            [row,col]=ind2sub(size(Emese),lx); 
            p2=15+col; 
  
        %respecify network with optimal no of neurons in hidden layer 
        for k=1:iteracio 
            net_final = fitnet(p2); 
            [net_final, tr2]=train(net_final,Input,Target); 
            outputs2 = net_final(Input); 
        end   
      Testadat=inputom(2:11,251+j:280+j);   %Testadat= Test_expl. vars 
      Testarget=inputom(1,251+j:280+j);     %Testarget= Test_target var 
      Testadat_norm=mapminmax('apply',Testadat,cs); %reverse mapminmax 
      for k=1:iteracio 
        day_fcst(k,:) = sim(net_final,Testadat_norm); %Apply the specified net 
      end 
      day_fcst_avg(1,:)=mean(day_fcst(1:100,:)); 
     %Volatility forecast as output of the  
     Output_Test(1+(j/30),:)=mapminmax('reverse',day_fcst_avg,ts); 
     % vector of volatility forecast 
     Vol_fcst((1+(j)):(30+(j)),1)=Output_Test(1+(j/30),1:30);  
     % calculating the mse for the test population in every subsample 
     Test_mse(1+(j/30),1)=mse(net,Testarget, Vol_fcst); 
end 
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%% 2.Option Trading Module 
% The module relies on the following inputs: Vol_fcst_call/put, C_mid_o,  
%P_mid_o,C_mid_c, P_mid_c, GARCH_fcst. The Vol-fcst is derived from the  
% previous module, while the others are external inputs.  
% The module first computes the directional change and applies filters to 
% avoid unprofitable trading (crit_chng). Than using the option prices the 
% module calculates straddle prices for a given date for long and short  
% straddle strategy using closing prices form the following day.  
% Finally the module simulates trading based on the directional change in 
% volatility accounting for filters opening a long(short) straddle position  
% should the volatility rise (fall). Portfolio value is also computed for  
% GARCH strategy where the directional trading is based on the forecasted 
% conditional volatility of the model. 
n=length(Vol_fcst_call); 
p=120; % Length of trading period 
Strdl_o=zeros(n,1);Strdl_c=zeros(n,1); L_straddle=zeros(n,1); 
S_straddle=zeros(n,1); Trcost=zeros(n,1); 
 
% 1.Calculate implied volatility from observed prices 
 IV_mdl_call=zeros(n,1);IV_mdl_put=zeros(n,1); IV_mdl_average=zeros(n,1);  
 dIV_mdl_average=zeros(n,1);dIV_mdl_average(1,1)=0; 
 for i=1:n 
 IV_mdl_call(i)=blsimpv(S(i),K(i),r(i),Tt(i),C_mid_o(i),0.5,0,[],{'Call'}); 
 IV_mdl_put(i)=blsimpv(S(i),K(i),r(i),Tt(i),P_mid_o(i),0.5,0,[],{'Put'}); 
 IV_mdl_average(i,1)=(IV_mdl_put(i)+IV_mdl_call(i))/2; 
 end 
  
%Calculate deltaIV_mdl_average 
 for i=2:n 
     dIV_mdl_average(i,1)=(IV_mdl_average(i,1)/IV_mdl_average(i-1,1))-1; 
 end 
% 2. Filtering change in volatility and setting transaction costs  
Ret_ann_tbl=zeros(5,6);Ret_ann_add_tbl=zeros(5,6); 
Ret_GARCH_tbl=zeros(5,6);Ret_GARCH_add_tbl=zeros(5,6); 
for k=0:0.001:0.05 
for c=0:0.0025:0.01 
    % Filters are calculated as follows 
    crit_chng=k; 
    Filter=zeros(n,1); 
    dVOL=zeros(n,1); 
    for i=1:1:p 
        dVOL(i,1)=(Vol_fcst_call(i+1)/Vol_fcst_call(i))-1; 
        if abs(dVOL(i))>crit_chng 
            Filter(i,1)=1; 
        else  
            Filter(i,1)=0; 
        end 
    end 
  
    %Calculating BS prices for call and put with fcstd volatility for day_t 
    C_mid_h=zeros(n,1); P_mid_h=zeros(n,1); Strdl_h=zeros(n,1); 
    Wrong_call=zeros(n,1);Wrong_put=zeros(n,1); 
     
    for i=1:n 
        [C_mid_h(i,1), Wrong_put(i,1)]=blsprice(S(i),K(i),r(i),Tt(i),Vol_fcst_call(i)); 
        [Wrong_call(i,1),P_mid_h(i,1)]=blsprice(S(i),K(i),r(i),Tt(i),Vol_fcst_put(i)); 
        Strdl_h(i,1)=C_mid_h(i,1)+P_mid_h(i,1); 
    end 
  
    % Calculate straddle prices for given date 
    Init=100; %Initial_value 
    Trc=c; 
    Profit=zeros(p,1); 
    PortfolioV=zeros(p,1);PortfolioV_add=zeros(p,1); 
    PortfolioV(1)=100;PortfolioV_add(1)=100; 
    GARCH_portfolioV=zeros(n,1); GARCH_portfolioV_add=zeros(n,1); 
    GARCH_portfolioV(1)=100;GARCH_portfolioV_add(1)=100; 
     
    for i=1:n 
        % Straddle values 
        Strdl_o(i,1)=C_mid_o(i,1)+P_mid_o(i,1); 
        Strdl_c(i,1)=C_mid_c(i,1)+P_mid_c(i,1); 
  
        % calculate transaction costs for each straddle 
        Trcost(i,1)=((Strdl_o(i,1)+Strdl_c(i,1))*Trc); 
        % Straddle profit with transaction costs 
        S_straddle(i,1)=((-Strdl_o(i,1)+Strdl_c(i,1)-Trcost(i,1))/Strdl_o(i,1)); 
        L_straddle(i,1)=(((Strdl_o(i,1)-Strdl_c(i,1))-Trcost(i,1))/Strdl_o(i,1)); 
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    end 
  
% 3. Straddle Trading profit based on hypothetical straddle price decision 
    for i=2:p  
       if Date_lag(i,1)<3; 
        if Strdl_h(i,1)-Strdl_o(i,1)>Trcost(i,1) % market straddle underpriced> buy  
                Profit(i,1)=L_straddle(i,1)*Filter(i,1); 
            elseif Strdl_o(i,1)-Strdl_h(i,1)>Trcost(i,1) % mrkt strdl overpriced> sell  
                Profit(i,1)=S_straddle(i,1)*Filter(i,1); 
            else 
                Profit(i,1)=0; 
        end 
       else 
          Profit(i,1)=0; 
        end  
    end 
     
% 4. GARCH Profit calculation 
    GARCH_Profit=zeros(p,1); dGARCH_VOL=zeros(p,1); 
     %apply k as filter 
        for i=2:p 
           dGARCH_VOL(i,1)=(GARCH_fcst(i,1)/GARCH_fcst(i-1,1))-1; 

           if dGARCH_VOL(i,1)>k 
               GARCH_Profit(i,1)=L_straddle(i,1); 
           elseif dGARCH_VOL(i,1)<-k 
               GARCH_Profit(i,1)=S_straddle(i,1); 
           else 
               GARCH_Profit(i,1)=0; 

           end 
           %multiplicative: reinvest previous losses gains 
           GARCH_portfolioV(i,1)=GARCH_portfolioV(i-1,1)*(1+GARCH_Profit(i,1)); 
           %additive:store previous losses gains 
           GARCH_portfolioV_add(i,1)=GARCH_portfolioV_add(i-   
 1,1)+(100*GARCH_Profit(i,1)); 
        end 
         
    % Calculating Portfolio Value 
    for i=2:p; 
        PortfolioV(i,1)=PortfolioV(i-1,1)*(1+Profit(i,1)); 
        PortfolioV_add(i,1)=PortfolioV_add(i-1,1)+(100*Profit(i,1)); 
    end 
  
% 5. Profit calculation for both portfolios 
        Ret_m=(PortfolioV(p,1)/PortfolioV(1,1))-1; 
        Ret_ann=((1+Ret_m)^(250/p))-1; 
        Ret_G=mean(GARCH_portfolioV(p,1)/GARCH_portfolioV(1,1))-1; 
        Ret_GARCH=((1+Ret_G)^(250/p))-1; 
         
        Ret_m_add=(PortfolioV_add(p,1)/PortfolioV_add(1,1))-1; 
        Ret_ann_add=((1+Ret_m_add)^(250/p))-1; 
        Ret_G_add=mean(GARCH_portfolioV_add(p,1)/GARCH_portfolioV_add(1,1))-1; 
        Ret_GARCH_add=((1+Ret_G_add)^(250/p))-1; 
         
        Rf=mean(r); 
        Mean_ret=Profit(1:p,1); 
        Sharpe_ANN = sharpe(Mean_ret, Rf); 
        Sharpe_ANN; 
        Ret_ann_tbl(c*400+1,k*100+1)=Ret_ann; 
        Ret_GARCH_tbl(c*400+1,k*100+1)=Ret_GARCH; 
        Ret_ann_add_tbl(c*400+1,k*100+1)=Ret_ann_add; 
        Ret_GARCH_add_tbl(c*400+1,k*100+1)=Ret_GARCH_add; 
end 
end 
 
% 1 Multiplicative, 2. Additive models 
Ret_GARCH_tbl1=real(Ret_GARCH_tbl); Ret_ann_tbl1=real(Ret_ann_tbl); 
Ret_GARCH_tbl2=real(Ret_GARCH_add_tbl); Ret_ann_tbl2=real(Ret_ann_add_tbl); 
 
%% 3. Profit Calculation measures 
% In the profit calculation module we calculate several measures statistical 
% and financial to evaluate the efficiency of the forecast. 
% Apart from the hit rate we calculate the Annualized return for the period 
% and the Sharpe ratio for the sub period. We further test whether the 
% difference between different performance measures for forecasting are 
% statistically significant with the Diebold-Mariano test. 
% The module heavily relies on two external functions, the hit_rate_ANN, 
% and the dmtest and also requires the vector of implied volatility 
% averages (IV_mdl_average) as input. 
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% 1. Hit rate calculation 
n=length(PortfolioV);Vol_fcst_avg=zeros(n,1); 
for i=1:n 
    Vol_fcst_avg(i,1)=(Vol_fcst_call(i,1)+Vol_fcst_put(i,1))/2; 
end     
[Hit_rate, HitNo]=hit_rate_ANN(IV_mdl_average(1:n,1), Vol_fcst_avg(1:n,1)); 
  
% Annualized Return 
Ret_G=mean(GARCH_portfolioV(n,1)/GARCH_portfolioV(1,1))-1; 
Ret_m=(PortfolioV(n,1)/PortfolioV(1,1))-1; 
Ret_ann=((1+Ret_m)^(250/n))-1; 
Ret_GARCH=((1+Ret_G)^(250/n))-1; 
  
% Sharpe Rate for ANN and GARCH 
Rf=mean(r); % Find the corresponding rate from the vector of 4 weeks T-Bill 
Mean_retG=GARCH_Profit(1:n,1); 
Sharpe_Garch = sharpe(Mean_retG, Rf); 
  
Mean_ret=Profit(1:n,1); 
Sharpe_ANN = sharpe(Mean_ret, Rf); 
  

 
%% 4. Diebold Mariano tests 
% MSE validation- Diebold Mariano test, creating forecasting errors ME,  
% calculate test statistics dm12,13,23 and group statistics to EMESE table 
 

l=length(Vol_fcst_avg_7); 
ME_ANN1=bsxfun(@minus,Vol_fcst_avg_7,IV_mdlaverage7); 
ME_ANN2=bsxfun(@minus,Vol_fcst_avg_8,IV_mdlaverage8); 
ME_ANN3=bsxfun(@minus,Vol_fcst_avg_9,IV_mdlaverage9); 
  
MSE_n_ANN1=ME_ANN1.^2; 
MSE_n_ANN2=ME_ANN2.^2; 
MSE_n_ANN3=ME_ANN3.^2; 
  
MSE_ANN1=sum(MSE_n_ANN1)/l; 
MSE_ANN2=sum(MSE_n_ANN2)/l; 
MSE_ANN3=sum(MSE_n_ANN3)/l; 
  
% Diebold_MAriano test: Computing test statistics 
dm12=dmtest(ME_ANN2, ME_ANN1, 1); 
dm23=dmtest(ME_ANN2, ME_ANN3, 1); 
dm13=dmtest(ME_ANN1, ME_ANN3, 1); 
EMESE=zeros(2,3); 
EMESEtbl(1,1)=MSE_ANN1; EMESEtbl(1,2)=MSE_ANN2;EMESEtbl(1,3)=MSE_ANN3; 
EMESEtbl(2,1)=dm12; EMESEtbl(2,2)=dm23;EMESEtbl(2,3)=dm13; 

	
	


